Pär Persson Mattsson | February 6, 2014

A couple of weeks ago, we published the first blog post in a Hybrid Modeling series, about hybrid parallel computing and how it helps COMSOL Multiphysics model faster. Today, we are going to briefly discuss one of the building blocks that make up the hybrid version, namely shared memory computing. Before that, we need to consider what it means that an “application is running in parallel”. You will also learn when and how to use shared memory with COMSOL.

Read more ⇢

Article Categories

Fanny Littmarck | February 5, 2014

Rockets have been refined over the past 150 years or so. Until the 1920s, when liquid-fuel rockets were invented, rockets were powered by solid propellants and oxidizers. Both these bring forth issues in how they’re handled on the ground or in flight. Private space flight companies are now working on hybrid rocket innovations to solve this problem.

Read more ⇢

Article Categories

Lexi Carver | February 4, 2014

Keeping the inside of a building at a comfortable temperature requires well-designed windows to keep heat out during the summer and heat in during the winter. Let’s take a look at how windows provide thermal insulation and how they carry heat (or not) between the inside of a building and the outdoors.

Read more ⇢

Article Categories

Walter Frei | February 3, 2014

There are various ways of handling interactions between fluids and solids in COMSOL. You can, for example, explicitly model the fluid using the full Navier-Stokes equations for the pressure and fluid velocity fields. Although that can be a very accurate approach, it’s much more expensive than is needed for certain types of Fluid-Structure Interaction (FSI) problems. Here, we’ll introduce a method for modeling enclosed volumes containing incompressible fluids, under the additional assumption that the momentum and energy transfer via the […]

Read more ⇢

Article Categories

Mark Yeoman | January 31, 2014

We have the pleasure of introducing a new guest blogger, Mark Yeoman of Continuum Blue, who showcases what they can do for their biomedical engineering clients. In a recent webinar, I had the opportunity to highlight some of the great things we at Continuum Blue are doing in the biomedical field. In this guest post, I will delve deeper into how we use COMSOL software to help clients improve bioreactor performance and show you a bioreactor modeling example.

Read more ⇢

Article Categories

Andrew Griesmer | January 30, 2014

Meshing a geometry is an essential part of the simulation process, and can be crucial for obtaining the best results in the fastest manner. However, no one wants to be bogged down figuring out the exact specifications for their mesh. To help combat this problem, COMSOL Multiphysics has nine built-in size parameter sets when meshing. Here, we’ll discuss size parameters for free tetrahedral meshing. Swept meshing with prismatic and hex elements, and other types, will be covered in future postings.

Read more ⇢

Article Categories

Bettina Schieche | January 29, 2014

Integration is one of the most important mathematical tools, especially for numerical simulations. Partial Differential Equations (PDEs) are usually derived from integral balance equations, for example. Once a PDE needs to be solved numerically, integration most often plays an important role, too. This blog post gives an overview of the integration methods available in the COMSOL software and shows you how you can use them.

Read more ⇢

Article Categories

Chandan Kumar | January 28, 2014

Here is an interesting question: How can we easily probe the solution at a point that is moving in time, but associated with a stationary geometry? One option is to use the General Extrusion coupling operator. In this blog post, we will take a look at how to use the General Extrusion coupling operator to probe a solution at a point in your geometry, and illustrate how to implement a dynamic probe using an example model.

Read more ⇢

Article Categories

Alexandra Foley | January 27, 2014

There are, in general, two different types of ventilation systems: mixing ventilation and displacement ventilation. Displacement ventilation is used in large spaces with tall ceilings (at least three meters high), and therefore is mainly found in office buildings, schools, and other public spaces. These higher ceilings allow for upward convective flows exhausting air contaminants, thus resulting in improved air quality. This post explores the simulation of a displacement ventilation system to determine the air temperature and velocity within a room.

Read more ⇢

Article Categories

Mark Fowler | January 24, 2014

Mixers with rotating components are essential in many industrial applications, including food production, manufacturing chemicals, pharmaceuticals, and other consumer products. While the industrial processes of mixers differ, product requirements like quality, reproducibility, and uniformity must remain constant. Using the Mixer Module is one way you can make sure these product requirements are met. In our upcoming webinar, you’ll learn how the fluid flow interfaces available in the Mixer Module allow you to streamline the design of mixers and their mechanisms.

Read more ⇢

Article Categories

Pär Persson Mattsson | January 23, 2014

Twenty years ago, the TOP500 list was dominated by vector processing supercomputers equipped with up to a thousand processing units. Later on, these machines were replaced by clusters for massively parallel computing, which soon dominated the list, and gave rise to distributed computing. The first clusters used dedicated single-core processors per compute node, but soon, additional processors were placed on the node requiring the sharing of memory. The capabilities of these shared-memory parallel machines heralded a sea change towards multicore […]

Read more ⇢

Article Categories

1 18 19 20 21 22 71