Alexandra Foley | July 25, 2014

In the 2012 edition of Multiphysics Simulation, we featured an article about modeling spinal cord stimulation to determine the effect that scar tissue can have on electrical current distribution during the treatment of chronic pain. Recently, the full-length paper by Beth Israel Deaconess researchers Jeffrey Arle, Kris Carlson, Longzhi Mei, and Jay Shils was published in the journal Neuromodulation.

Read more ⇢

Article Categories

Lexi Carver | July 24, 2014

Modular orthopedic devices, common in replacement joints, allow surgeons to tailor the size, material, and design of an implant directly to a patient’s needs. This flexibility and customization is counterbalanced, however, by a need for the implant components to fit together correctly. With parts that are not ideally matched, micro-motions and stresses on mismatched surfaces can cause fretting fatigue and corrosion. Researchers at Continuum Blue Ltd. have assessed changes to femoral implant designs to quantify and prevent this damage.

Read more ⇢
Mark Fowler | July 23, 2014

Topological optimization is routinely used in the design and refinement of microfluidics devices. The process also comes in handy for modeling a Tesla microvalve.

Read more ⇢

Article Categories

Mark Fowler | July 22, 2014

Researchers from AltaSim Technologies presented a paper at last year’s COMSOL Conference in Boston sharing their analyses on Mie scattering of electromagnetic waves and how they compare to the Mie solution.

Read more ⇢

Article Categories

Bridget Cunningham | July 21, 2014

In chemistry, separation using differences in migration patterns plays an important role in understanding the properties of different chemical species. To help identify small chemical differences between molecules, researchers use a type of electrophoresis known as isoelectric focusing. With the use of an applied electric potential, this technique helps to define and separate molecules based on their varying isoelectric points. Let’s take a closer look at this separation method.

Read more ⇢
Fanny Littmarck | July 18, 2014

When it comes to lithium-ion batteries, quality and safety are top priorities. Assessor of 20,000 batteries per year, Intertek Semko AB understands this perhaps better than anyone else.

Read more ⇢
Andrew Griesmer | July 17, 2014

Professional baseball pitchers are able to make a baseball move left, right, down, and even up (sort of) to get it by the opposing batter. The physics behind this can be explained by the Magnus effect.

Read more ⇢

Article Categories

Laura Bowen | July 16, 2014

The need for a contaminant-free space to manufacture medicine has led scientists to try many creative new approaches to improve the process. At Argonne National Lab, creating a device that floats and rotates chemical compounds in thin air was just the answer they were looking for. It meant two important changes: the amount of each chemical necessary could be implemented very precisely and the risk of outside impurities disrupting the results was minimized.

Read more ⇢
Lexi Carver | July 15, 2014

In order to carry astronauts safely beyond earth’s atmosphere to where they can explore outer space, spacecraft must provide a very important chemical mixture: breathable air. Given the limits on space and weight for a manned shuttle, the systems flying aboard the craft must revitalize the air inside rather than carry the full amount needed for a mission. With this in mind, a team at NASA has developed an approach to atmosphere revitalization that relies on water adsorption.

Read more ⇢

Article Categories

Walter Frei | July 14, 2014

Whenever modeling magnetic fields in steady-state, transient, or frequency domain with the AC/DC Module, we want to reduce the size of the model as much as possible to minimize the computational resources and time needed to solve the model. Today, we will introduce the three types of symmetry boundary conditions that you can exploit in your modeling and show how to use them.

Read more ⇢

Article Categories

Alexandra Foley | July 11, 2014

There are many factors that go into designing the ideal oven — supreme cooking capability is a must, but energy efficiency and the use of materials with reduced environmental impact is also important. How can all of these different factors be combined to create an oven that is optimized for the best performance? Engineers working at Whirlpool Corporation along with the European green energy initiative, GREENKITCHEN project, found that multiphysics simulation was vital to the success of their design process.

Read more ⇢
1 7 8 9 10 11 71