Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Mach-Zehnder Modulator

A Mach-Zehnder modulator is used for controlling the amplitude of an optical wave. The input waveguide is split up into two waveguide interferometer arms. If a voltage is applied across one of the arms, a phase shift is induced for the wave passing through that arm. When the two arms are recombined, the phase difference between the two waves is converted to an amplitude modulation. This is a ...

Stress-Optical Effects with Generalized Plane Strain in a Photonic Waveguide

Planar photonic waveguides in silica (SiO2) have great potential for use in wavelength routing applications. The major problem with this type of waveguide is birefringence. Anisotropic refractive indices result in fundamental mode splitting and pulse broadening. The goal is to minimize birefringence effects by adapting materials and manufacturing processes. One source of birefringence is the use ...

Optical Scattering by Gold Nanospheres

This model demonstrates the simulation of the scattering of a plane wave of light by a gold nanosphere. The scattering is computed for the optical frequency range over which gold can be modeled as a material with negative complex-valued permittivity. The far-field pattern and losses are computed.

Self-Focusing of an Optical Beam

A Gaussian beam is launched into BK-7 optical glass. The material has an intensity-dependent refractive index. At the center of the beam, the refractive index is the largest. The induced refractive index profile counteracts diffraction and actually focuses the beam. Self-focusing is important in the design of high-power laser systems. The model demonstrates 3D nonlinear wave propagation.

Dielectric Slab Waveguide

A planar dielectric slab waveguide demonstrates the principles behind any kind of dielectric waveguide such as a ridge waveguide or a step-index fiber. This model solves for the effective index and fields of a dielectric slab waveguide and compares the solution to analytic results.

Directional Coupler

Two embedded optical waveguides in close proximity form a directional coupler. The cladding material is GaAs and the core material is ion-implanted GaAs. The waveguide is excited by the two first supermodes of the waveguide structure - the symmetric and antisymmetric modes. Two numeric ports are used on both the exciting boundary and the absorbing boundary, to define the two modes. A boundary ...

Nanorods

A Gaussian electromagnetic wave is incident on a dense array of very thin wires (or rods). The distance between the rods and, thus, the rod diameter is much smaller than the wavelength. Under these circumstances, the rod array does not function as a diffraction grating (see the Plasmonic Wire Grating model). Instead, the rod array behaves as if it was a continuous metal sheet for light polarized ...

Step Index Fiber Bend with Bending Loss

A step index fiber bent into 1cm radius is analyzed with respect to propagating modes and radiation loss. It is shown how to find the power averaged mode radius and how to use this to compute the effective mode index.

Scatterer on a Substrate

A plane TE-polarized electromagnetic wave is incident on a gold nanoparticle on a dielectric substrate. The absorption and scattering cross-sections of the particle are computed for a few different polar and azimuthal angles of incidence. The model first computes a background field from the plane wave incident on the substrate, and then uses that to arrive at the total field with the nanoparticle ...

Plasmonic Wire Grating

In this model, a plane wave is incident on a wire grating on a dielectric substrate. Coefficients for transmission, reflection, and first order diffraction are computed for different angles of incidence The model is set up for one unit cell of the grating, flanked by Floquet boundary conditions describing the periodicity. As applied, this condition states that the solution on one side of the ...

Quick Search

1 - 10 of 19 First | < Previous | Next > | Last