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Abstract: Organogenesis is a tightly regulated 
process that has been studied experimentally for 
decades. We are developing mechanistic models 
for the morphogenesis of limbs, lungs, and 
kidneys with a view to integrate available 
knowledge and to better understand the 
underlying regulatory logic. In our previous 
paper on simulating organogenesis in COMSOL 
(German et al COMSOL Conf Procedings 2011) 
we discussed methods to efficiently solve such 
models, predominantly on a static domain. Organ 
size, however, changes dramatically during 
development, and tissues are composed of 
several layers that may expand both together or 
independently. Moreover, the developing organ 
are typically embedded in an environment, and 
diffusional exchange with this environment can 
affect the patterning process. Here we discuss 
methods to build and efficiently solve models 
involving large deformation of composite 
domains in COMSOL Multiphysics. 
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1. Introduction: Mechanistic Models for 
Organogenesis 
Organogenesis is a tightly regulated process. 
Many important genes have been identified and 
the regulatory logic has been analyzed 
extensively over the last decades. The discovered 
regulatory networks are too complex to be 
understood intuitively and many questions 
remain open. Computational models can help to 
integrate available knowledge, to test the 
consistency of current models, and to generate 
new hypotheses.  
 
During organogenesis tissue layers organize and 
differentiate into functionally organized units.  
Recent studies demonstrate the highly 
deterministic nature of the developmental 
processes. Thus lung branching morphogenesis 
is extremely stereotyped such that the lung tree 
with its thousands of branches is identical in 

embryos in the same genetic background.1 The 
proximal part of the bronchial tree is built by 
three geometrically simple, recursive modes of 
branching.1 This suggests a deterministic 
underlying process, and deterministic models for 
pattern formation as studied for decades in 
developmental biology thus appear suitable.2 We 
have previously developed and solved such 
models in COMSOL Multiphysics and we 
correctly predicted novel genetic regulatory 
interactions in the limb bud3, and we suggested a 
mechanism for branch point selection, smooth 
muscle and vasculature morphogenesis in the 
lung4,5 as well as for patterning during long bone 
development6 (Figure 1). COMSOL has 
previously been shown to solve similar problems 
with a known analytic solution accurately.7 
 
Our models are formulated as systems of 
reaction-diffusion equations of the form: 

 
where  denotes the velocity field of the 
domain and Ri the reactions, which couple the 
equations for the different species Xi. Di is the 
diffusion constant and  the Nabla operator. 
The velocity field might be either imposed or be 
based on concentrations of proteins, which 
changes the behavior of the cells, e.g. the 
division rate or cell adhesion and motility.  A 
wide range of reaction laws can be used8; typical 
reactions include 

 
for the decay of component X and  

 
for the formation of a complex XmYn made of m 
X and n Y molecules. The reaction terms can 
contain also other non-linear functions like 
enzymatic activation  and inhibition 

, where  is modelled analogous to 
Hill kinetics (Michaelis-Menten for n=1): 
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The threshold K is the concentration at which the 
activation reaches half its strength and the 
exponent n depends on the cooperativity of the 
regulating interactions. For example 

 
describes a production term for a protein X that is 
induced by another protein Y. 
 
Our models typically comprise three to fifteen 
variables, and the discretized problem typically 
has 50 000 to 500 000 degrees of freedom.  
 
2. Conventions & Computational Details 
Here we use bold italic to refer to COMSOL 
fields and nodes e.g. Coefficient form PDE, 
Diffusion Coefficient refers to the field where 
diffusion coefficient need to be specified. 
 
Models discussed in this manuscript are 
implemented in COMSOL 4.2a through the 
Coefficient form PDE interface; models 

featuring deforming domains are implement by 
coupling the Coefficient form PDE and ALE 
Moving Mesh interfaces.  
 
The following COMSOL settings and options are 
used in the models discussed in this manuscript: 

- first order Lagrange shape function for 
problem discretization; 

- The direct solver Pardiso, variables are 
segregated at least into two groups: first 
group - variables defined in the PDE;  second 
group - variables describing domain 
deformation (.xyz or .xy); 

- Jacobian is set to be updated at every time 
step; 

- to model implicitly defined domain 
deformation Prescribed n velocity was 
defined, while Prescribed t1 velocity was left 
undefined; 

- to model implicitly defined deformation of a 
composite domain Lagrange multipliers were 
enabled at subdomain boundaries;   

 

RX = "# $(Y )

Figure 1. Computational Models for Organogenesis in COMSOL. The upper panel depicts a computational 
model for early lung branching morphogenesis. a) The core regulatory network for lung branching 
morphogenesis; b) the idealized computational domain comprises a 2D cross-section along the cylinder axis of 
symmetry; c) and d) computed distribution of FGF10 (color code) and SHH (contour lines) in bifurcation and 
lateral branching modes of branching. Brighter color depicts regions with higher concentration of FGF10. The 
lower panel shows the solution of a reaction-diffusion equation on a three dimensional deforming domain in the 
shape of embryonic limb bud as extracted from microscopic OPT data (courtesy of Erkan Uenal, Zeller lab, 
DBM, University of Basel).  
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- if Lagrange multipliers was enabled at the 
boundaries of deforming domain Exclude 
algebraic option was chosen in the Advanced 
section of time dependent solver; 

- to model implicitly defined deformation the 
Automatic Remeshing solver feature was 
enabled. 
 

3. Use of COMSOL Multiphysics 
3.1 Static Composite Domains 
Organs usually comprise several tissues e.g. 
embryonic lungs and kidneys are built of distinct 
layers of epithelial and mesenchymal cells. Both 
lung and kidney branching are controlled by 
signaling from the epithelium to the 
mesenchyme and back. From the computational 
(mathematical) point of view this means that 
different sets of PDEs describe the epithelial and 
mesenchymal layers. COMSOL provides several 
possibilities to define such a model: 1) a global 
set of PDEs is defined on the entire composite 
domain; 2) PDEs are defined on the subdomain 
and then coupled. PDEs defined on subdomains 
are coupled by imposing the following 
Constraints: ci

j-ci
k on the appropriate subdomain 

borders, where the superscript index refers to a 
variable and the subscript index refers to a 
domain index. Figure 2a depicts a composbbite 

one-dimensional domain, where the diffusion 
coefficient differs on the subdomains. 
 
In the first instance we define the PDE globally 
on a composite one-dimensional domain 
according to 

   (1) 
with the boundary conditions  
L(0)=1, Lx(l0)=0 
where, Di =1 on domain 1 and 100 on domain 2, 
!=1.  
 
This results in artifacts near the subdomain 
border: the concentration L shows an artificial 
minimum (Figure 2b, red line) and the 
diffusional flux has a discontinuity (Figure 2c, 
red line). 
 
In the second approach the PDE is defined 
locally on the subdomains: 

     (2) 
with boundary conditions  
L1(0)=1, L2(l0)=0 and L1(lborder)=L2(lborder) 
where, D1 =1 and D2 =100 on domain 2,  !=1. 
This approach does not suffer from such artifacts 
(Figure 2b,c, black curves). 

L̇ = Di∆L− σL

L̇1 = D1∆L1 − σL1

L̇2 = D2∆L2 − σL2

Figure 2. Static Composite Domain.  The solutions of the simple reaction-diffusion equation 1 (upper panels) or 
of the Schnakenberg type equations 3 (lower panels) are more accurate if the variables are defined locally (black 
lines) on subdomains rather than globally (red lines) on the entire composite domains. (a,d) The computational 
domains on which (a) equation 1 or (d) equation 3 are solved. (b-c) The solutions of equation 1, i.e. (b) the 
concentration L and (c) the diffusional flux as calculated according to equation 1. (e-f) The solutions of equation 
3, i.e. the concentration of (e) the slow (U) and (f) the fast (V) diffusion component respectively.  
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The same can be observed also for more 
complicated models with coupled PDEs such as 
the classical Turing patterning models which 
have been studied as models of developmental 
patterning processes for decades9,10.  The 
classical Schnakenberg Turing model9,11 is based 
on two coupled PDEs of reaction-diffusion type 
with variables U and V, i.e. 

     (3) 
with a, b, g, D positive parameters and D>>1. 
 
As before a global definition of the PDEs on the 
entire domain results in a solution with artifacts, 
i.e. negative concentrations (Figure 2e). The 
definition of equations locally on the subdomain, 
on the other hand, not only results in a more 
accurate solution, but also in a problem with a 

smaller number degrees of freedom. In summary, 
we conclude the latter approach to be superior. 
 
3.2 Implicitly Defined Deformation of 
Composite Domains 
Experimental observations show that cells and 
tissue can proliferate and/or move towards 
regions of high concentration of a morphogen.12 
We will ignore the mechanistic details of this 
process as these are still to be discovered and we 
will instead describe the local tissue movement 
as a function of the local concentration of a 
morphogen; the tissue movement is directed 
normal towards the surface.  Figure 3a shows a 
solution of the Schnakenberg type equations 
(Equation 3) on a domain that deforms according 
to the rules specified above. The computational 
domain depicted in Figure 3a comprises only one 
thin domain, such that a concentration gradient 
can form only along the domain, but not in the 
perpendicular direction. If the domain is thicker 
or comprises several subdomains concentration 
gradients can develop in any direction. We 
would like our domain (subdomains) to deform 
synchronously, so that the thickness of the 
domain remains constant during simulation; this 
is often observed in nature if a deforming tissue 
comprises one or few monolayers of cells e.g. 
epithelial. To achieve synchronous deformation 
of subdomains even when concentration 
gradients can develop in any direction we need 
to map the solution from the leading domain 
border onto those, which follow (Figure 3a). 
COMSOL provides Model Coupling Operators 
to implement such a mapping. Extrusion Model 
Coupling Operator takes a local concentration as 
an argument at the following boundary and 
evaluates it at the corresponding point at the 
leading boundary. The following types of 
Extrusion Coupling Operators are available:  
boundary mapping, linear extrusion and 
general extrusion. As no information is 
available in the COMSOL documentation to help 
with the choice of a particular type of extrusion 
coupling operator we tested all of them.  Figure 
3b,c and d shows that general extrusion 
provides the desirable result – all domain 
boundaries deform synchronously, while 
boundary mapping and linear extrusion fail. In 
the latter case, subdomains’ thickness changes 
over time. As a result there is a rapid degradation 
of mesh quality and boundaries touch each other. 

U̇ = ∆U + γ(a− U + U2V )

V̇ = D∆+ γ(b− U2V )

Figure 3. Deforming growth of simple and 
composite domains. (a) Deforming growth of a 
simple thin domain according to a concentration 
profile as generated by the Schnakenberg-type 
Turing model. (b-d) Deformations as calculated 
with (b) boundary mapping, (c) linear extrusion 
and (d) general extrusion for solution mapping. 
Panels with/without asterisk depict solution for the 
fast and slowly diffusing component in the 
Schnakenberg type equations that govern the 
deformations. Color code: blue and red colors 
correspond to low and high values respectively. 
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3.3 Explicitly Defined Deformation of 
Composite Domains 
If experimental measurements are available it is 
desirable to solve PDEs on deforming domains 
where the deformation is prescribed. This is 
straightforward to implement using Moving 
Mesh (ALE), Prescribed Mesh Displacement 
unless subdomains deform according to different 
velocity fields (Figure 4a and b). Deformation of 
subdomains with uneven speed leads to the rapid 
degradation of mesh quality at the subdomains 
borders. This problem can be solved by building 
a computational domain not as a union, a default 
option, but as an assembly of subdomains. In the 
latter case subdomains are independent of each 
other. As a result meshes can be defined and 
deformed independently on the subdomains. To 
couple PDEs on the boundary of subdomains 
continuity of equations needs to be defined with 
the Continuity node in the Coefficient form 
PDE interface. Figure 4a shows the solution of 
Schnakenberg type equations (Equation 3) on the 
deforming composite domain comprising a 
rectangular and an ellipse, where the ellipse 
expands faster than the rectangular.  Figure 4c 

and 4d show that the solutions for variables U 
and V are smooth. 
 
4. Outlook 
Here we presented a guide of how to implement 
models that involve deforming composite 
domains in COMSOL. We restricted ourselves to 
simplistic descriptions of tissue deformation, i.e. 
local growth was assumed to be normal to the 
surface and proportional to a local concentration 
of morphogen. The regulation of growth and 
tissue mechanics is an active field of research 
and the link between microscopic signaling and 
tissue mechanics is increasingly well explored.13, 

14 As this information becomes available models 
will have to be developed that bridge the gap 
between mechanics at the micro and macro 
scales. This can be expected to further advance 
our understanding of the key mechanisms of 
organ development. 
 
All our examples were defined in two spatial 
dimensions. Similar approaches can be used to 
model deforming domains in 3D (Figure 1e). 
However, the size of the problem and thus the 

Figure 4. Explicitly defined deformation of a composite domain. Panel a) solution of Schakenberg type 
equation on a growing domain. Color code: blue and red colors correspond to low and high values, accordingly; 
b) shows that domain comprises ellipse and rectangular expanding with different speed; c) and d) show 
concentration of variable U and V along the lines indicated in the upper panel, blue and black lines show 
concentrations calculated at various times. 
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computational time increases dramatically. 
Methods are required to enable the efficient 
parallelization of solvers such that computing 
clusters can be used efficiently. In the current 
COMSOL version use of multiple nodes only 
results in a modest speed-up.15 Further 
improvements in the parallelization of the FEM 
solvers will be important to enable the 
simulation of ever more realistic and predictive 
models of biology.  
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