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Abstract: In  the  developing  embryo,  neurons 
form  connections  by  projecting  axons  to 
appropriate  target  areas.  The projection process 
includes  neurite  elongation,  resulting  from  the 
assembly of new cytoskeletal material at the free 
end of the axon , a complex cascade of steering 
decisions,  driven by signals  in  the surrounding 
environment,  and  the  biomechanical  properties 
of the extracellular matrix. In this work we focus 
on the early development of the olfactory nerve. 
In  particular,  we  discuss  a  mathematical  and 
numerical  multiscale  framework  aimed  at 
obtaining  a  description  of  the  morphological 
organization of the axons at the first steps of the 
olfactory system formation. Here we also discuss 
possible  applications  and  generalizations  with 
the  numerical  difficulties  in  the  computational 
approach.
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1. Introduction
  In the developing nervous system, axons find 
the  targets  they   will   innervate  navigating 
through  the  extracellular  environment. 
Pathfinding  crucially  relies  on  chemical  cues 
and, among the others, guidance by gradients of
diffusible  ligands  plays  a  key  role  see,  e.g. 
[1,2,3]).  The  structure  of  the  axon  deputed  to 
detect  and  transduce  extracellular  cues  is  the 
growth cone, located at the axon tip. The growth 
cone  is  provided  of  several  filopodia,  small 
filaments  that  protrude  in  a  fan-shaped  array 
from the  lamellar  veils  surrounding  the  central 
nucleus.  Filopodia  are  highly  active  structures 
that provide multiple functions [4,5]. On the one 
side,  they  probe  the  environment  acting  as 
sensor:  due to  their  high  area  to  volume ratio, 
individual  filopodia  can  read  extracellular 
chemical cues with a high sensitivity. Moreover, 
they have been recognized to play an essential 
role in detecting contact-mediated signals as well 
as graded chemotropic signals. On the other side, 

filopodia can adhere to the substratum by their 
tips and exert a pull force on the growth cone.
Here  we  briefly  present  a  mathematical  and 
numerical  framework  aimed  at  obtaining  a 
description  of  the  macroscopic  growth  cone 
trajectories  in a possibly complex environment. 
In the present model, the continuous movement 
of  the  axon growth  cone  observed  at  a  coarse 
time scale is obtained on the base of a lumped 
description of the filopodia dynamics.  Namely, 
we describe the joint action of the filopodia as a 
lumped  1D mass-spring  system,  that  pulls  the 
growth  cone and the trailing axon body in  the 
direction of the perceived cues. The parameters 
entering the lumped model are fitted on the base 
of  the  axonal  response  in  certain  well  studied 
conditions. In particular, as a model of response 
we  consider  here  the  turning  angles  obtained 
from  experiments  in  which  the  axons  are 
exposed to a graded attractive concentration of 
ligand  [6,7].  The  mechanical  effects  of  the 
matrix are also investigated, extending the model 
to  the  case  where  the  surrounding  matrix  is 
undergoing  a  deformation  field.  We  point  out 
that  significant  differences  in  the  resulting 
morphology are shown with respect to the fixed 
geometry case. In order to tackle the problem in 
a variegated scenario, more similar to the in vivo 
conditions,  more  sophisticated  numerical 
techniques  are  required.  Approximate  solutions 
of  partial  differential  equation  systems  in  the 
resulting mathematical model with finite element 
techniques are introduced to carry out numerical 
simulations that describe the phenomenon. This 
complex multiscale problem   looks like a good 
opportunity  for  potential  COMSOL 
Multiphysics. 

2. From cues  to axon movements

2.1 Lumped model of filopodia dynamics

In the developing nervous system, axons find the 
targets they will innervate navigating through the 
extracellular  environment.  Pathfinding crucially 
relies on chemical  cues and, among the others, 



guidance by gradients of diffusible ligands plays 
a  key  role.  Detection  and  transduction  of 
navigational cues is mediated by the growth cone 
(GC), a highly dynamic structure located at the 
axon  tip.  The  cascade  that  leads  to  motility 
decisions  is  initiated  by  binding  of  the  ligand 
with receptors located on the GC surface and on 
filopodia,  thin filaments that  protrude out from 
the distal part of the GC. In the olfactory system, 
individual  axons  of  olfactory  receptor  neurons 
(ORNs) located in the epithelium lining the nasal 
cavity project  to the olfactory bulb where they 
synapse on the dendrites of second-order neurons 
within globular structures of neuropil - glomeruli 
It  was recently discovered that all  of the axons 
from  ORNs  expressing  the  same  odorant 
receptor  gene  converge  onto  two  (or  a  few) 
glomeruli  in  the  bulb.  The  location  of  these 
glomeruli is bilaterally symmetrical and invariant 
across  animals.  However,  little  is  understood 
about  the  mechanisms  in  the  olfactory  bulb 
governing  such  precise  topographical  targeting 
by  ORN axons.  Continual  neurogenesis  in  the 
subventricular  zone  of  postnatal  and  adult 
forebrain  has  been  well  documented,  but  the 
mechanisms  underlying  cell  migration 
differentiation  from  this  region  are  poorly 
understood  [8]. In Figure 1. we briefly described 
the main factors involves in migration, guidance 
and  organization  of  axon  projection.  We 
represent  each  axon  as  a  1D  elastic  body 
immersed in the extracellular matrix, modeled in 
turn as a 2D continuum deformable body.  The 
axon is supposed to be clamped at a boundary of 
the matrix and to grow away from this position 
with an intrinsic growth rate.

Figure 1. The whole process of the early formation of 
the olfactory nerve.

Unless  otherwise  influenced,  axons  show  a 
general  tendency to extend in straight  lines, by 
virtue  of  the  inherent  rigidity  of  their  internal 
microtubular structure.  In  presence of chemical 
ligand,  binding  with  receptors  distributed  on 

filopodia and growth cone outer surface occurs. 
This  fact  triggers  a  sequence  of  complex 
intracellular  signaling  mechanisms,  a 
macroscopic result of which is the redistribution 
of filopodia in a biased way around an angular 
sector induced by the signal.  We represent  the 
joint  pull  action  of  filopodia  as  a  lumped  1D 
mass-spring system. The spring, with its internal 
stiffness,  is  connected  to  the  filopodia 
mechanical properties, while the mass represents 
the  inertial  effect  of  the  trailing  growth  cone, 
pulled away from its original trajectory. 

Figure 2. Notation for the lumped model of filopodia 
and growth cone.

With  reference  to  Figure  2,  Let  L0 the  vector 
representing  he  initial  length  of  the  spring 
(direction and modulus), and let vg =vg eg  be the 
growth cone velocity. We consider the modulus 
vg   to  be  a  given  constant  quantity.  The  unit 
vector  eg  forms an angle  α with respect to the 
horizontal direction. The unit vector er  forms an 
angle β with eg . We model the perturbation to the 
motion induced by extracellular cues acting only 
along  the  direction  e⊥,  with  abscissa  s, 
orthogonal  to  eg.  This  means  to  consider  the 
effect of the spring projected along this direction.
Let  ω=√(k/m)  the harmonic pulsation, k and m 
being  the  spring  stiffness  and  the  body  mass, 
respectively.  Moreover,  let  δt  be the time scale 
of the growth cone turning, under the hypothesis 
ω δt<<1,  the   following  differential  system of 
equations describe the trajectory evolution of the 
growth cone position Xd =Xd (t), as a continuous 
phenomenon for 0≤ t ≤T,

Ẋ d=v g , dv g=e g∧L0∧e g
2

2
dt

X d 0=xd
0,v g 0=vge g

0
(1)



where  xd
0 and  vg

0  are  the initial  position and 
direction of the axon growth cone, respectively.
We  approximated  the  system  (1)  with  a 
numerical  integration  scheme based  on Runge-
Kutta method.  Moreover,   in vitro experiments
are  carried,  establishing an  attractive  diffusible 
ligand  gradient  in  a  substrate  where  axon 
explants  are  let  grown.  Axon  trajectories  are 
observed turning towards the increasing gradient 
and  turning  angles   are  measured.   These 
measurements  deal  for  the  most  part  with  the 
response  to  a  single  graded  chemotropic 
substance. 

2.2 ligand fields

The  concentration  field  distribution  of  a 
diffusible substance can be modeled as the result 
of  a  diffusion-degradation  process  occurring 
after  the substance  has  been  released  at  rate  q 
from  target  areas.  We  consider  the  following 
system

−D c xkc x =∑ j=1
N 1A jq ,

∂ c
∂ n=0on∂M ,

(2)

where  the  first  equation  is  for  x∈ΩM the 
bidimensional  computational  domain,  D  is  the 
diffusion  coefficient  and  k  the  degradation 
coefficient  and  where  1Aj is  the  characteristic 
function such that for every subset Aj of  ΩM has 
value 1 at points of Aj  and 0 at points of  ΩM\ Aj. 

Standard no--flux conditions are imposed on the 
boundaries.  Ligands  are  supposed  not  to 
mutually interact  in the substrate.   System  (2) 
describes  the  stationary  state  of  the  diffusion 
process. To approximate system (2), we use the 
Finite  Element  Method  (FEM),  with  linear 
interpolation  functions  (P1 elements)  on  a 
triangular  mesh  as  available  in  the  basic 
COMSOL  Multiphysics. 
Axons  response  in  presence  of  multiple  cues, 
this is a complex situation, especially in view of 
the fact the response of a neuron can be mediated 
not  only by the temporal  graded  expression of 
receptors  for  the single ligand,  but  also by the 
interplay  of  receptors.  We  do  not  address 
detailed intracellular pathways, but we aim rather 
at  a  description  of  the  downstream  effect  on 
directional  movement.  Namely,  we  introduce 
weights  λi(t)$  that  are  related  to  the  time 
availability  of  receptors  for  the  corresponding 
cue.  Accordingly,  they  model  the  time-
dependent  activity  of  receptors,  possibly 

influenced  by  the  competition  with  other 
receptors  (for  example  in  a  receptor--mediated 
silencing  mechanism).  The  equivalent  spring 
mean length vector l0  er results from the weight 
combination. 

2.3 Deformation field induced by the
extracellular matrix

Mechanical  properties  of  axons  and  of  their 
surrounding  environment  are  issues  gaining 
increasing  importance.  A  microneedle  locally 
applying a force induces deformations on axon 
shaft. Behavior under tension and recover from 
deformations allow to characterize the main axon 
mechanical properties [9] Transduction pathways 
are  being  studied  that  explain  how  the 
cytoskeleton reorganizes following to an applied 
tension. 
the initial time is denoted by  ΩM

0  and it will be 
referred  to  as  the  reference  configuration.  The 
deformed  domain  at  the  time  t  is  denoted  by 
ΩM(t).  By  introducing  a  Cartesian  reference 
frame  at  a  fixed  origin  O,  the  components  of 
position  vectors  in  each  configuration  being 
measured  along  these  axes.  The  smooth 
deformation function ϕ maps any point  X in ΩM

0

onto the corresponding point x=ϕ(X,t). The map 
ϕ is  assumed  to  possess  continuous  derivative 
with  respect  to  position  and  time  and  to  be 
invertible. The field  U( X,t)=x(X,t)-X represents 
the displacement field of a particle. The velocity 
of  axons  gaining  their  way  through  the 
deforming  matrix,  is  the  superposition  of  their 
intrinsic growth speed and of the matrix speed. 
We  suppose  axons  to  passively  follow  the 
deformations  imposed  by  the  matrix  (a  wide 
spectrum  of  different  behaviors  could  be 
analyzed  with  this  respect).  On  the  reference 
domain, the series of position of the axon head 
(the  axon  trajectory)  is  represented  by  the 
material  curve  Γ,  and  the  the  velocity  being 
given by the total time derivative

Ẋ d t =vg t vt  ,

where it is now present the additional term  vϕ(t), 
representing the time rate variation of the matrix 
shape.
In  reality,  the  displacement  field  of  the 
developing  tissue  is  itself  an  unknown  of  the 
problem,  resulting  from  several  complex 
processes  of  growth,  remodeling  and 
morphogenesis.  In  this  work,  we  model  the 
mesenchyme  as  a  unique  deformable  elastic 



body  that  undergoes  large  deformations,  this 
hypothesis being general  enough to allow for a 
series  of  successive  improvements  in  more 
refined models. For reasons of simplicity we do 
not consider mass sources or sinks. The forcing 
term is represented by an imposed motion of the 
(computational)  boundaries.  When disposing of 
digitally  segmented  section  from  laboratory 
experiments, the imposed motion can be directly 
inferred from data segmentation. This will be the 
object  of  a  future  work.  As  usual  in  a  large 
deformation regime, the mechanical  problem
at  each  time  step  is  mapped  to  the  reference 
configuration  ΩM

0.  The  boundary  of  ΩM
0  is 

partitioned  in  a  part  ΓD,  where  Dirichlet 
boundary  conditions  are  prescribed  and  a  part 
ΓN,  where  Neumann  no-stress  boundary 
conditions are prescribed. The deformation takes 
place  in  a  manner  slow  enough  to  allow  for 
neglecting inertial terms. Moreover, as common 
in biological applications, we suppose null body 
forces. The mathematical model on the reference 
configuration reads 

−∇ X⋅T=0onM
0,

U= U on  D ,
T⋅ nM=0on N ,

 (3)

where  nM denotes  the  outward  normal  on  the 
boundary of the reference configuration,  T is the 
first  Piola-Kirchoff  stress  tensor  and   U  is  a 
prescribed displacement field. We consider the
extracellular  matrix  to  be  an  hyperelastic 
material, so that the stress tensor is given by the 
derivative of an internal stored energy function.
The choice of the particular form of the internal 
stored energy does not change the setting of the 
problem. Here,  we adopt the simplest  isotropic 
elastic  St.Venant--Kirchhoff  model:  the  elastic 
strain energy is a function of body deformation 
only (and not of deformation history), and at any 
location the response of the material in a stress--
strain experiment is the same in all directions.
To  discretize  system  (3)  in  the  complex 
geometry  of  the  developing  embryo,  we  use 
again the FEM. The elastic body is represented 
as  a  mesh  consisting  of  triangles.  A deformed 
configuration  is  specified  by the  displacements 
of the n mesh vertices and is approximated by 
piecewise linear functions. 

4. Some numerical studies
We present the results of the complete model (1), 

(2),  (3)  while in the subsequent series of tests, 
we investigate the effect of turning off a single 
mechanism.
A  result  of  the  simulation  using  the  complete 
model are shown in Figure 3, at initial, half and 
final time, respectively. We consider 500 axons, 
randomly seeded along the bottom boundary and 
assigned  different  birth  times.  A  prescribed 
motion (amounting at the final time at about the 
20% of  the  initial  vertical  dimension  for  each 
side) is imposed to the top and bottom borders.
A weak attractive diffusible cue is placed in the 
top-central  part  of  the  domain.  Repulsive  cues 
are placed close to the corners.

Figure 3. Axon morphology with the complete model, 
the geometry is evolving. 

In  Figure  4   we  show  the  morphology  of  the 
nerve  when  fasciculation  is  turned  off.  Notice 
that  in  this  simulation  only  50  axons  are 
considered. Diffusible chemical cues drive axons 
near  but,  in  absence  of  homophilic  attraction, 
they do not form a coherent  structure and they 
depart in a fan.
When diffusive cues are turned off, axons tend to 
grow straight and to disperse in the extracellular 
matrix.  Axon  fasciculation  is  observable  at  a 
certain  degree,  being  promoted  by  random 
movements  and  geometrical  neighborhood.  In 
Figure  5,  the  complete  model  results  are 
compared  with  the  model  where  chemical 
diffusive  cues  are  inactive.  Colors  represents 
concentrations. In both models, along the borders 
short--range repulsive cues are used
to  keep  axons  confined  in  the  computational 
domain. In the complete model, purple indicates 
an attractive zone, whilst light  blue a repulsive 
one, with intermediate modulations. In the partial 



model,  purple  indicates  absence  of  chemical 
substances.

Figure  4.  Axon  morphology  when  homophilic 
attraction is turned off.

Figure 5. Axon morphology with the complete model 
and when chemical cues are turned off.

5. Conclusions

In this work, we have proposed a mathematical 
and  numerical  framework  aimed  at  producing 
numerical  simulations of axon pathfinding.  We 
have briefly described a macroscopic model
for  the  axon  growth  cone  motion  based  on  a 
lumped description of the filopodia dynamics.
As  a  further  significant  aspect,  we  have 
considered  the  deformation  of  the  surrounding 

matrix. The results show the impact on the final 
morphology.  From this  point  of  view,  a  more 
realistic  characterization  of  the  mechanical 
behavior  of  the  axons  could  be  introduced  by 
modeling a certain bending stiffness of the axon.
Moreover, the St. Venant--Kirchhoff model is a 
classical  nonlinear  model  for  compressible 
elastic materials.  The complete model we have 
proposed  is  the  superposition  of  the  matrix 
movement and of the trajectory deviation due to
the growth cone sensing role. In this contribution 
we have dealt with the 2D case; the 3D extension
as well as a deeper comparative discussion with
biological  data  will  be  the  object  of  a  future 
work.
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