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Abstract: We apply the classical Nelder-
Mead optimization algorithm to a low fidelity 
EM model, using different mesh and bounding-
box configurations. We demonstrate that the 
interaction of the coarse mesh with the bounding 
box size can determine whether the optimization 
is successful or not. 
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1. Introduction 
 

Setup of 3D electromagnetic (EM) models, 
specifically the selection of proper boundary 
conditions, size of the simulation box, kind-and-
size of port excitations, and meshing scheme for 
a given structure are especially important for 
reliable EM simulations. It is desired to rapidly 
explore the solution space by using a low fidelity 
EM model and a way to do it is through 
optimization algorithms so that insight can be 
gained before moving on to the design and 
fabrication process.  

Microstrip circuits and other planar structures 
are particularly sensitive to these configuration 
parameters, since, a too small simulation box 
might alter the results due to unintended EM 
interaction between the simulated structure and 
the box walls [1]. Usually, this problem is 
empirically solved by selecting a sufficiently 
large simulation box; however, we demonstrate 
that the effective size of the box is dependent 
upon the mesh size and therefore, a sufficiently 
large box can become insufficient when 
changing the size of the mesh. Extremely large 
simulation boxes do not suffer this problem, but 
force larger simulation times. 

We calibrate a simulation box by finding the 
box size at which the structure responses are 
practically unchanged when small perturbations 
to the box dimensions are applied for a particular 
mesh size and then modify the mesh size. We 
present two different results obtained when 

performing direct EM optimization of a classical 
microstrip band-pass filter [2] for two different 
mesh and box sizes. 
 
2. Structure under Study 
 
The filter model under study is illustrated in Fig. 
1. We keep separations ygap, xgap, and Hair from 
the filter to the bounding walls (see Fig. 1). The 
horizontal lumped ports length is lport. All walls 
of the enclosing box are scattering boundary 
conditions, excepting the bottom cover which is 
defined as impedance boundary condition to 
account for the ground plane losses. 
Infinitesimally thin metals, using a transition 
boundary condition, are employed for the 
conductors. We include metallic and dielectric 
losses and the model uses “free-tetrahedral” 
meshing for all domains. 
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Figure 1. Bounding box dimensions and 
minimum/maximum element sizes of meshing scheme 
for a microstrip band-pass filter in COMSOL. 
 
The meshing scheme considers not only the 
wavelength on different domains, but also the 



 

physical size of the different model regions. 
Different meshing resolutions are assigned for 
microstrip trace regions, ports, gap, and the 
global structure, by defining minimum and 
maximum element sizes (δmin, δmax), as illustrated 
in Fig. 1. 
 
All the simulations in this paper use default 
solver settings for COMSOL1 4.3a (build 161) 
configured with asymptotic waveform evaluation 
(AWE) extension using the expression 
abs(emw.S11) and Padé approximation of order 
5. We use a PC Intel Core i7-2600 at 3.4 GHz 
and 16 GB RAM and Windows 7 with 64 bits. 
 
The length of the lumped port lport was selected 
reasonably small to achieve a good quasi-static 
approximation. Using a low-resolution mesh, Cg 
= [1  10], Cm = [4  10], Cp = 3 and Cgap = 3 (see 
Fig. 1), we select a large simulation box size 
(Hair = 20H, ygap = 20H, xgap = 20H) such that 
small perturbations on box dimensions do not 
change filter responses, as shown in Fig. 2. Fig. 
3 shows the band-pass filter model configuration 
in COMSOL. 
 
3. Formulation of the Optimization 
Problem 
 
Let x ∈ X ⊆ ℜn represent the n optimization 
variables of the structure to be optimized. In 
general, the optimization variables are restricted 
to a region X of valid design parameters. The 
circuit responses are denoted by R ∈ ℜr, where r 
is the number of responses to be optimized. 
Vector R depends on the optimization variables 
x, some pre-assigned parameters contained in 
vector z, and the simulated frequencies contained 
in vector f ∈ ℜp. However, from the 
optimization perspective, the responses of 
interest can be treated as a multidimensional 
vector function dependent only on the 
optimization variables, R(x): X → ℜr. 
We want to solve the following optimization 
problem, 
   ))((minarg* xRx

x
U

X∈
=     (1) 

where U: ℜn→ℜ is the objective function 
expressed in terms of the design specifications, 
and vector x* contains the optimal model design. 

                                                           
1 COMSOL Multiphysics version 4.3a 2012, COMSOL AB, 
Tegnérgatan 23, SE-111 40 Stockholm, Sweden. 
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Figure 2. Filter responses within small perturbations 
on box dimensions a) reflection parameter, b) 
transmission parameter. 

 
Figure 3. Band-pass filter model configuration in 
COMSOL using a low-resolution mesh, Cg = [1  10]T, 
Cm = [4  10]T, Cp = 3 and Cgap = 3; and the box size, 
Hair = 20H, ygap = 20H, xgap = 20H. 
 
For the objective function employed in (1) we 
use a minimax formulation, 
   { }   )(max))(( KK xxR

k
eU =   (2) 

where a negative value in the k-th error function, 
ek(x), implies that the corresponding design 
specification is satisfied, otherwise it is violated. 
For the structure under study, the following 
design specifications are defined, 

 |S21| > 0.8 for  4.9 GHz ≤  f  ≤ 5.1 GHz (3a) 



 

 |S21| < 0.1 for  5.5 GHz ≤  f  ≤ 4.5 GHz (3b) 
 |S11| < 0.2 for 4.92 GHz ≤ f ≤ 5.08 GHz (3c) 

We use as optimization variables x = [L1  L2  L3  
L4  Sg]T, keeping fixed during optimization the 
pre-assigned parameters z = [H  εr  Wp  Lp]T (see 
Fig. 4). In this case, vector R contains the filter 
transmission and reflection magnitudes at all the 
simulated frequencies. 

 
Figure 4. Band-pass filter dimensions. 
 
4. Optimization Results 
 
The filter is optimized using the Nelder-Mead 
optimization method. The starting point for 
optimization is x(0) = [L1

(0)  L2
(0)  L3

(0)  L4
(0)  Sg

(0)]T 
= [6.275    4.75    5.9    5    0.15]T (mm). The 
Nelder-Mead method [3,4] employs a direct 
search strategy (no gradients are calculated). It 
only uses function evaluations following a 
simplex, which is a special point distribution 
(polytope) with n + 1 vertices. The Nelder-mead 
algorithm [5] is widely used in engineering fields 
due to its good performance with highly 
nonlinear, discontinuous, non-differentiable, and 
noisy objective functions. The Matlab2 command 
of the unconstrained Nelder-Mead method, also 
known as the simplex search method, is 
fminsearch. 
Using the model configuration described in 
section 2, the optimization results are shown in 
Fig. 5. It is seen (Fig. 5a) that  the objective 
function U(R(x)) does not become negative, 
indicating that the optimization process fails to 

                                                           
2 Matlab R2012a, Version 7.14.0.739, The MathWorks, Inc., 
3 Apple Hill Drive, Natick MA 01760-2098, 2012. 

fulfill the design specifications, as confirmed in 
Figs. 5b and 5c. Fig. 5d shows the evolution of 
the normalized optimization variables. These 
undesired optimization results are due to an 
improper model configuration, as demonstrated 
next. 
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Figure 5. Optimization results using an improper 
model configuration in COMSOL: a) objective 
function U(R(x)), b) reflection parameter at initial and 
optimal designs, c) transmission parameter at initial 
and optimal designs, d) scaled optimization variables. 
 
We repeat the same optimization procedure but 
now using a larger bounding box, Hair = 25H, ygap 
= 25H, xgap = 25H and a better resolution Cg = [1  
10], Cm = [8  10], Cp = 4 and Cgap = 4 which 
decreased the minimum and maximum element 
sizes (δmin, δmax), see Fig. 1. Fig. 6 shows the 
band-pass filter model configuration in 
COMSOL. 
 

 
Figure 6. Band-pass filter model configuration in 
COMSOL using a better resolution mesh, Cg = [1  10], 
Cm = [8  10], Cp = 4 and Cgap = 4; and a larger 
bounding box, Hair = 25H, ygap = 25H, xgap = 25H. 
 
It is seen in Fig. 7a that the objective function 
U(R(x)) becomes negative, requiring a much 
smaller number of simulations to fulfill the 
design specifications, as shown in Figs. 7b and 
7c. Fig. 7d shows that the normalized 
optimization variables have very small changes 
at the end of the optimization process showing 
that the model configuration is much more 
suitable in this case. The optimal design found is 
x* = [L1

*  L2
*  L3

*   L4
*  Sg

* ]T = [6.4123   4.4192   

6.1825   4.4776   0.15101]T (mm). These results 
confirm that selecting an appropriate 3D EM 
model configuration is critical to achieving 
optimization goals.  
 
In summary, our approach to find an appropriate 
3D EM model configuration, assuming that the 
structure to be designed is capable to satisfy the 
specifications, follows these steps: 
a. Select a reasonably small length for the 

lumped port, using a low-resolution mesh with 
a large simulation box size such that small 
perturbations on box dimensions do not change 
filter responses.  

b. Optimize the structure.  
c. If the optimization process fails to fulfill the 

design specifications, it is necessary to change 
the model configuration by using a larger 
bounding box, and a better resolution. 

d. Launch the same optimization procedure. 
e. Repeat steps c and d until the objective 

function becomes negative. 
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Figure 7. Optimization results using a suitable model 
configuration in COMSOL: a) objective function 
U(R(x)), b) reflection parameter at initial and optimal 
designs, c) transmission parameter at initial and 
optimal designs, d) scaled optimization variable. 
 
5. Conclusions 
 

The EM optimization of a coarsely 
discretized model of a microstrip band-pass filter 
implemented in COMSOL was realized using 
two different model configurations. We 
presented a systematic methodology to find an 
appropriate 3D EM model configuration on a 
direct EM optimization of a low fidelity models. 
It was confirmed that the direct EM optimization 
of coarse models in COMSOL could be 
dramatically enhanced by an appropriate 
bounding box size as well as by the lumped port 
length and a suitable meshing scheme.  
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