### Computational homogenization in with an application on masonry structures

Georgios E. Stavroulakis

K. Giannis, M.E. Stavroulaki, G.A. Drosopoulos\*

Institute of Computational Mechanics and Optimization www.comeco.tuc.gr
Technical University of Crete, Chania, Greece

\* Leibniz University of Hannover, Germany

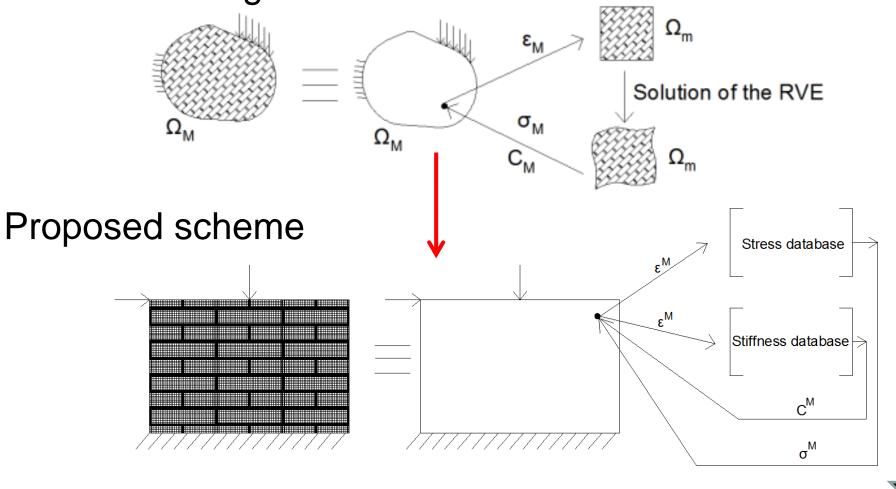






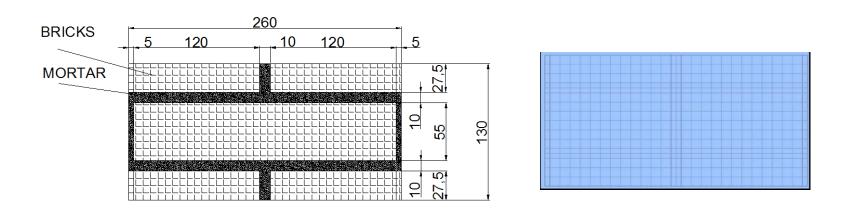
# Part A: The proposed computational homogenization method

Classical configuration



### Steps

- Consideration of a masonry RVE FEM with COMSOL Multiphysics,
- Non-linear perfect plastic law in the mortar joints
- Linear elastic bricks
- Linear displacement boundary conditions loading



### Steps

2. Consideration of different loading paths and loading levels (parametric analysis)

3. Estimation of the average stress and strain

4. Repetition for the estimation of stiffness information

### Steps

- 5. Creation of two databases:
- a) Stress
- b) Stiffness

 Incorporation in an overall multi-scale homogenization scheme in MATLAB using interpolation (metamodel)

7. Comparison with direct heterogeneous macroscopic analysis in ABAQUS-MARC

### The microscopic analysis

Scanning the 3d space of loading stains =>
 Determination of several loading paths for the RVE

Key parameter for the success of the concept

 Incorporation of a parameter in the linear displacement equations =>

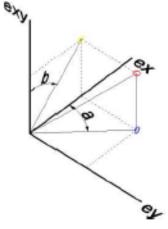
Determination of several strain loads

### Loading paths

Linear displacements:

$$\mathbf{u}|_{\partial V_m} = \boldsymbol{\epsilon}^M \mathbf{x}$$
  $\boldsymbol{\epsilon}^M = [e_{xx} \quad e_{yy} \quad e_{xy}]^T$ 

- Creation of loading paths:
- Simulation of possible combinations of  $\varepsilon^{M}$  members =>
- Introduction of two angles, a, b =>
- 3d scanning of the strain space:



- (a, b) = (a, 90), (a, 60), (a, 30), (a, 0), (a, -30), (a, -60), (a, -90), for a=0:30:360 => 91 loading paths
- Incremental application of (each) loading

### Averaging procedure: strains-stresses

For each load path and load level:

$$<\epsilon>_{V_m}=\epsilon^M$$
  $<\sigma>_{V_m}=rac{1}{V_m}\int_{V_m}\sigma^m dV_m$ 

Postprocessing subdomain integration:
 COMSOL

Usage of script files to request the output quantities

Stress database: Saving in MATLAB mat files

### Averaging procedure: effective constitutive tensor

- Repetition of analyses for every load path and load level
- For each load path load level:
- Three test, incremental strain vectors are considered
- Three incremental average stress vectors are calculated
- Estimation of the effective elasticity tensor: Hooke's law  $[\delta \epsilon^M] = [\delta \epsilon_1^M \quad \delta \epsilon_2^M \quad \delta \epsilon_3^M]$

$$[\delta \boldsymbol{\sigma}^M] = [\delta \boldsymbol{\sigma}_1^M \quad \delta \boldsymbol{\sigma}_2^M \quad \delta \boldsymbol{\sigma}_3^M]$$

$$[\delta \boldsymbol{\sigma}^M] = \mathbf{C}^M [\delta \boldsymbol{\epsilon}^M] \Rightarrow \mathbf{C}^M = [\delta \boldsymbol{\sigma}^M] [\delta \boldsymbol{\epsilon}^M]^{-1}$$

## Overall multi-scale computational homogenization scheme

- MATLAB FEM<sup>2</sup> code: masonry structures
- Plane stress, first order, full integration FE
- Obtaining macroscopic information:
- Stress database → Macroscopic stress
- Stiffness database → Macroscopic tangent stiffness
- Repetition for each Gauss point and time step
- An interpolation method is needed
- Simplest, easier solution:

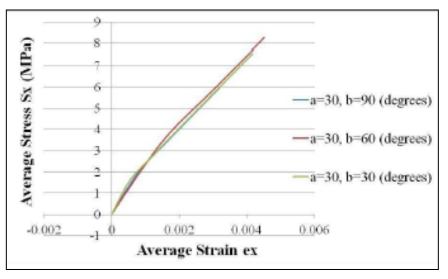
MATLAB function "TriScatteredInterp"

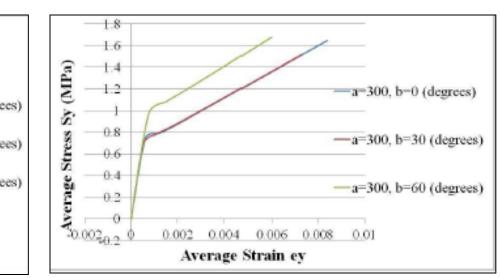
## Overall multi-scale computational homogenization scheme

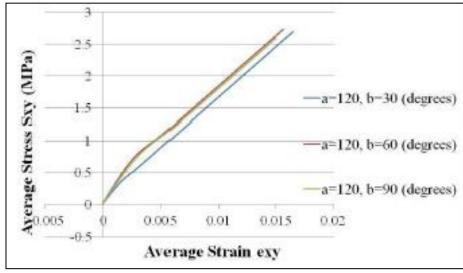
- Stress interpolation:
- Each strain vector (3x1) corresponds to one average stress value
- 3 repetitions to obtain the (3x1) stress vector
- Effective elasticity tensor interpolation:
- Each strain vector (3x1) corresponds to one value of the tensor
- 9 repetitions to obtain the (3x3) elasticity tensor

#### Results: micro simulations

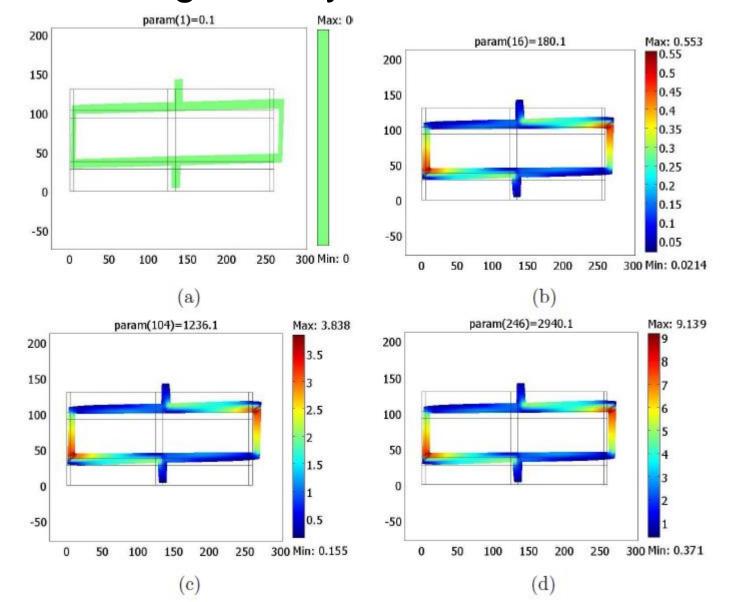
#### Non-linear average stress-strain behaviour







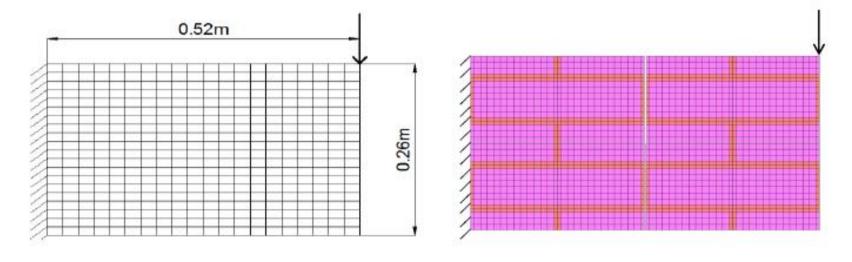
## Results: micro simulations Plastic strain: gradually increased, in the mortar



Application 1: small masonry wall

Homogeneous model:
Proposed approach
(20x20 elements)

Direct heterogeneous model: ABAQUS/MARC software

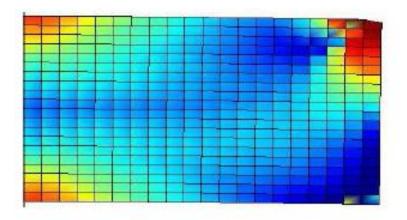


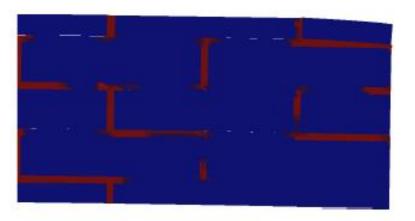
#### Degradation of strength

Homogeneous model:

Proposed approach

Direct heterogeneous model: ABAQUS

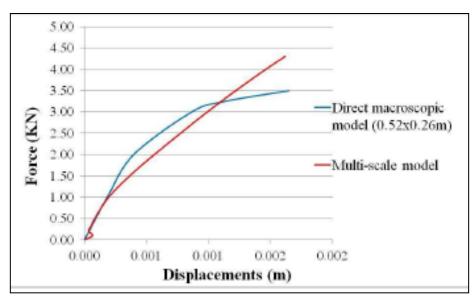


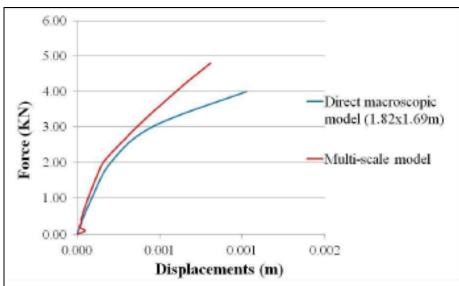


#### Force – displacement diagrams

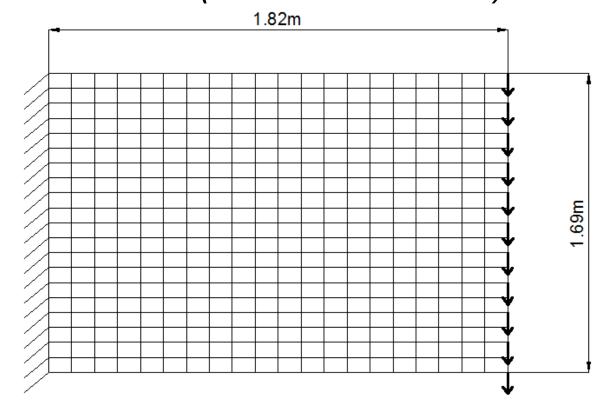
The previous small wall: 0.52x0.26m

A new, bigger masonry wall: 1.82x1.69m

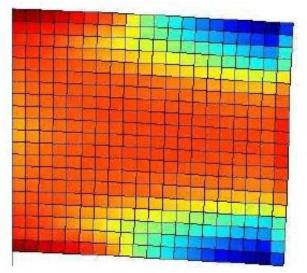


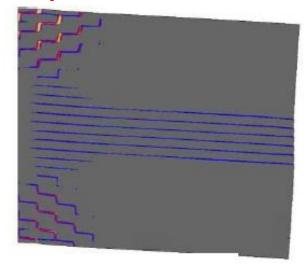


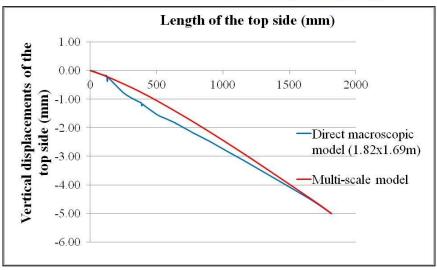
Application 2: a bigger masonry wall + distributed displacement of 5mm (20x20 elements)

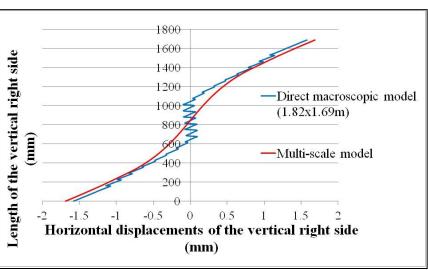


Degradation of strength – Displacement distribution

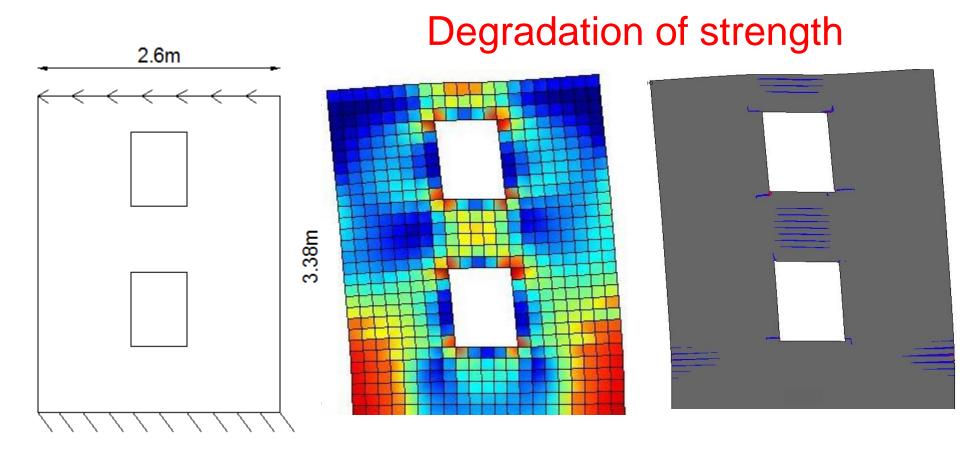








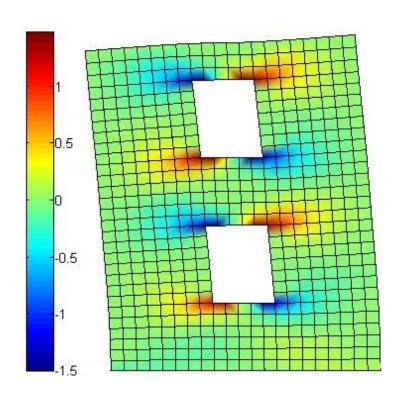
Application 3: masonry wall + openings

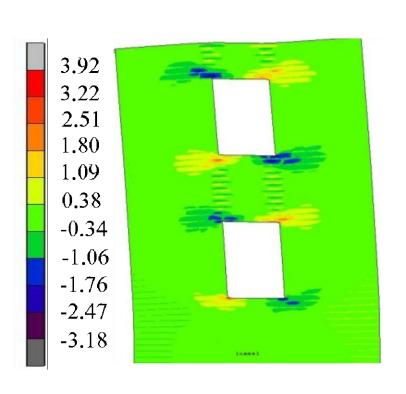


Stresses S<sub>xx</sub>

Multi-scale homogenization

**DNS** model

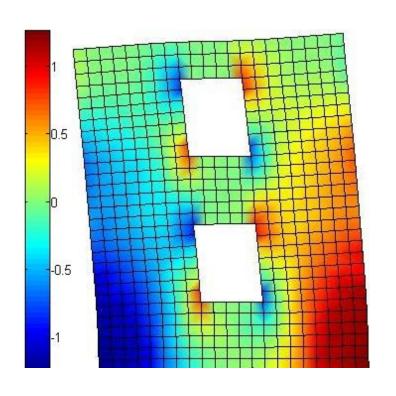


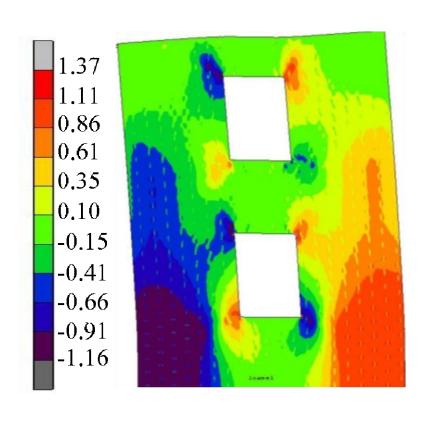


Stresses S<sub>yy</sub>

Multi-scale homogenization

**DNS** model

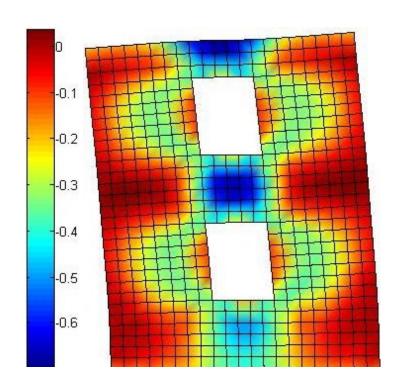


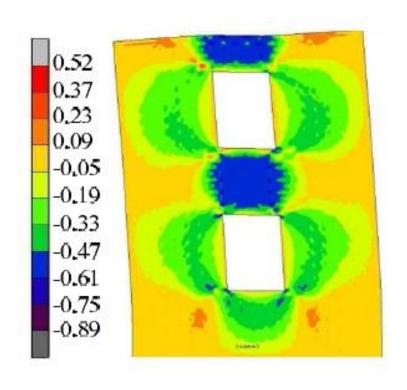


Stresses S<sub>xy</sub>

Multi-scale homogenization

**DNS** model





#### Conclusions

- A method for non-linear homogenization
- Good convergence with direct macroscopic analysis
- General method:
- 1)Can be applied to other RVEs
- 2)Can be applied to different constitutive RVEs laws
- Future study:
- Application to more complex constitutive laws / different RVEs
- 2) Different interpolation methods (Neural Networks)



The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.