	Acoustical Analysis of a Home Recording Studio	A POLYTECHNIC UNIN Instrumentum Disciplinase
	Prof. Kevin R. Anderson, Ph.D., P.E., August Smith, Daniel Forgette	
CAL POLY POMONA	California State Polytechnic University at Pomona, Mechanical Engineering,	1938 VNON
Nonlinear	FEA/CFD Multiphysics Simulation Laboratory, 3801 W. Temple Ave, Pomona, CA and 917	768, USA

Introduction: This poster presents the results of an acoustic analysis of a home recording studio. For the home recording studio owner, the most relevant question is "Where should the speakers be put for best sound?" To illustrate these effects we use COMSOL Acoustics to compute the eigenmodes of a home recording studio.

Results: The eigenmode shows the sound intensity pattern for its associated eigenfrequency. From the characteristics of the eigenmodes we can draw some conclusions as to where the speakers should be placed

Figure 4. Acoustic pressure for speakers forced at 75 Hz

Figure 1. Geometry and mesh of recording studio

Computational Methods: The Helmholtz Eqn. was solved for the eigenfrequencies or the room air where p = pressure, ρ = density, k = wavenumber, f = frequency, and c = speed of sound.

Figure 5. Isobaric surfaces for speakers forced at 75 Hz

Figure 6. Isobaric surfaces for speakers forced at 1000 Hz

Conclusions: Lower frequencies (50~150 Hz) are of interest since they are where the fundamental resonance exists for a given dimension of the room [1].

Eigenfrequency vs

Number of Elements

Figure 2. Flow point boundary conditions used to simulate speaker location in recording studio

Figure 3. Typical mesh size convergence study results

References:

 M. Moser, Engineering Acoustics, 2nd. Ed. Springer, New York, NY, 2009.

Excerpt from the Proceedings of the 2014 COMSOL Conference in Boston