Simulation of Droplet Impingement Dynamics by the Level Set Method

J.Hu¹, R. Jia¹, K. Wan² and X. Xiong³

¹ Department of Mechanical Engineering, University of Bridgeport

² Department of Mechanical Engineering, Northeastern University

³ Department of Electrical and Computer Engineering, University of Bridgeport

COMSOL CONFERENCE 2014 BOSTON

□ Introduction

- **D** Mathematical Models
- **Results and Discussion**
 - Droplet impingement process
 - Studies of Level Set parameters

Conclusions

Droplet Impingement Dynamics Applications

- □ Inkjet deposition
- □ Spray cooling of electronics
- □ Spray coating
- **Rain drop**

Droplet Impingement Dynamics Influencing Parameters

- **D**roplet properties
- **D**roplet size
- □ Impact velocity
- □ Attack angle
- □ Surface wettability
- □ Surrounding pressure

Droplet Impingement Dynamics Influencing Parameters

Reynolds number $(Re = \rho uD/\mu)$ Weber number $(We = \rho u^2 D/\sigma)$ Ohnesorge number $(Oh = (We)^{1/2}/Re)$

Shiaffino and Sonin

COMSOL Conference Boston 2014

Experimental Results of Water and Glycerin Impinging onto Smooth Glass

Impact of a water and a glycerin droplet onto glass for We = 391

Sikalo and Ganic, 2006

Fluid Properties and Simulation Conditions

Parameter	Symbol	Value	Unit
Density of glycerin	ρ_1	1220	kg/m ³
Dynamics viscosity of glycerin	μ_1	0.116	Pa·s
Density of air	$ ho_{a}$	1.204	kg/m ³
Dynamics viscosity of air	μ_{a}	1.814×10^{-5}	Pa·s
Surface tension	σ	0.063	N/m
Droplet diameter	D	2.45	mm
Impact velocity	V	1.41	m
Reynolds number	Re	36.3	
Weber number	We	93.8	
Ohnesorge number	Oh	0.267	

□Navier-Stokes equations for fluid flow:

$$\nabla \mathbf{u} = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \nabla \mathbf{u} \right) = \nabla \left[-p\mathbf{I} + \mu \nabla \mathbf{u} + (\nabla \mathbf{u})^T \right] + \rho \mathbf{g} + \mathbf{F}_{st}$$

 $\Box \text{Conservative Level Set method for interface} \\ \rho \left(\frac{\partial \phi}{\partial t} + \nabla (\phi \mathbf{u}) \right) = \gamma \left[\mathcal{E} \nabla \cdot \nabla \phi - \nabla \cdot \left(\phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|} \right) \right] \\ \mathbf{F}_{st} = \nabla \mathbf{T} = \nabla \cdot \left[\left(\sigma \left(\mathbf{I} - \mathbf{nn}^T \right) \right) \delta \right] \\ \mathbf{n} = \frac{\nabla \phi}{|\nabla \phi|} \end{aligned}$

COMSOL Conference Boston 2014

Mathematical Modeling of GMAW-Computational Domain and Boundary Conditions

Mathematical Modeling of GMAW – Boundary Conditions

Wetted wall boundary

$$\mathbf{un}_{wall} = 0$$
$$\mathbf{F}_{fr} = -\frac{\eta}{\beta}\mathbf{u}$$

Schematic of droplet attached to a surface: θ , contact angle; h, droplet height; d, droplet wet diameter

Impingement Process of Glycerin onto Wax Surface ($\theta = 94^{\circ}$)

COMSOL Conference Boston 2014

10/22/2014

Impingement Process of Glycerin onto Wax Surface ($\theta = 15^{\circ}$)

COMSOL Conference Boston 2014

Impingement Process of Glycerin onto Glass Surface ($\theta = 15^{\circ}$)

COMSOL Conference Boston 2014

Impingement Process of Glycerin onto Wax Surface ($\theta = 94^{\circ}$)

COMSOL Conference Boston 2014

Spreading Factor

Apex Height

COMSOL Conference Boston 2014

Effect of mesh and Experimental Validation

Spreading Factor

Maximum Velocity

Piecewise function pw1(t) for γ

Comparison of Spreading Factors Obtained with Different Setting of γ

Effect of the Parameter Controlling Interface, ε_{ls}

COMSOL Conference Boston 2014

Comparison of Spreading factors Obtained with Different Meshes and ε_{ls}

Droplet Cross-Sectional Shape

mesh1 and $\varepsilon_{ls} = 0.5h$

mesh2 and $\varepsilon_{ls} = 0.75h$

mesh1 and $\varepsilon_{ls} = 0.75h$

Coarse mesh and $\varepsilon_{ls} = 0.5h$

COMSOL Conference Boston 2014

Effect of Conservative and Nonconservative Form

COMSOL Conference Boston 2014

Conclusions

- The dynamic process of glycerin impinging onto two solid substrates with different surface wettability were simulated using the conservative Level Set method.
- □ The dynamic process of impingement was presented.
- The droplet spreading factor and apex height of glycerin spreading on a wax surface were validated against experimental results and good agreement were found
- □ Level set parameters are also studied to see their effects on the spreading factor and the porosity formation.

