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Introduction: The avian middle ear is a biomechanical system 

that serves as an impedance match between the air-filled 

outer ear and the fluid-filled inner ear. It is made up of one 

ossicle, the columella. To determine its mechanical 

parameters, an inverse analysis is performed by comparing 

the outcome of a finite element model to experimental results. 

Numerical model:  The model is built with the Structural 

Mechanics Module and solved in the frequency domain, using 

a viscoelastic characterization by a complex Young’s modulus 

E with loss factor ηs [2]. The geometry is extracted from µCT 

scans on a mallard duck [3]. The tympanic membrane and the 

annular ligament are fully constrained at their surroundings, as 

well as the end of Platner’s ligament. The acoustic stimulus is 

modeled by a uniform harmonic load of 1 Pa at the outer 

eardrum surface, and the cochlear fluid impedance by a 

viscoelastic spring foundation at the footplate [4]. All boundary 

conditions are shown in Fig. 1. Shell elements are used for the 

TM and solid elements for the remaining components. The 

initially used material parameters, listed in Table 1, were 

chosen isotropic. 

Results: Different Young’s moduli E, either isotropic (TM, 

EC & AL) or orthotropic (r radial & θ circumferential 

direction in the TM plane [6, 7]), were determined in the 

inverse analysis (see Table 2 & Fig. 2-4). 
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Conclusions: This study provides new insights in the 

elastic properties of the avian middle ear, and can be 

helpful to optimize human ossicle prostheses. In the 

future, acoustic-shell interaction will be incorporated, and 

also new experiments, sensitivity & uncertainty analyses 

will be done. 
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Table 1. Literature-based starting parameters used in the model. 
ρ = mass density and ν = Poisson’s ratio. 

Table 2. Calculated parameter values 
from inverse analysis, based on 
model & experimental results. 

Figure 1. The different components in the avian middle ear [1].  
The boundary conditions in the numerical model are indicated. 
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Inverse analysis: Under acoustic stimulation at different 

frequencies ω, the full-field eardrum vibration is measured with 

stroboscopic digital holography (SDH), and the single-point 

footplate velocity V with laser Doppler vibrometry (LDV) [1]. 

The mechanical parameters p are then determined by 

minimizing objective functions (1) & (2) between model and 

experiment, using the Matlab Surrogate Modeling Toolbox [5] 

and the LiveLink for Matlab. Notice that the magnitude M is 

normalized in this computation. 
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Figure 3. Surrogate models of 
objective functions (1) & (2) 

in which minima were identified. 

Figure 2. M- & ϕ-maps of 
experiment v. model for the 
obtained parameter values. 

Figure 4. Footplate velocity 
for experiment v. model. 

Component ρ [kg/m³] E [MPa] ηs ν 

TM 1.2E3 20 0.078 0.3 

Columella 2.2E3 1410 0 0.3 

Extracolumella 1.2E3 39.2 0.078 0.3 

Platner’s lig. 1.2E3 21 0.078 0.3 

Annular lig. 1.2E3 0.0412 0.078 0.3 


