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• Electrical double layer / Electrokinetic phenomena

• Description of seismoelectric effects

• Direct field, coseismic field and interface response

• Theoretical fundamentals

• Governing equations („u-p formulation“)

• Numerical simulation

• Model setup
• Physical responses of the system
• Anatomy of the interface response

• Conclusion & Outlook
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Motivation

• Seismoelectrics is an energy transfer between seismic and electromagnetic
wavefields occurring at the electrical double layer.

• Generation of seismoelectric signals in porous media is connected with
properties such as hydraulic permeability and porosity.

• Seismoelectric method could be used in hydrogeophysics for determining
these parameters directly.

• Numerical modelling in COMSOL with a view to an improved understanding of 
the interactive processes associated with seismoelectric effects.

Why numerical modelling of seismoelectric effects?
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The electrical double layer in a porous media – „Stern model“
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Effects caused by mechanical movement
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The electrokinetic phenomena

• Imposed: electric potential gradient ∆ϕ

• Measured: fluid flux Q

• Imposed: pressure gradient ∆h

• Measured: electric potential gradient ∆ϕ
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Electric and magnetic fields caused by deformation processes

Generation of seismoelectric effects
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Generation of seismoelectric effects – interface response
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Coupled processes of elastic deformation and pore fluid diffusion
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• Constitutive equations for linear poroelasticity ( stress-strain relationship )

• Dynamic equilibrium for the mixture ( „Biot formulation“ )

• Balance law for the solid equilibrium („dynamical behaviour of the system“ )

• Fluid mass balance equation, i. e. continuity equation

Dynamic poroelasticity equations

Increment of fluid content := kind of volumetric strain

fluid flux

Variation in the pore pressure

Relative displacement
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The electrokinetic coupling equations

Electroosmosis

Streaming electric current
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• Fluid transport modeled with generalized Darcy 's law

• Electric balance modeled with generalized Ohm 's law ( no external sources! )

Maxwell`s electromagnetic field equations

μ∂
∇× = −

∂
E H

t
• Faraday's law

• Ampère's law

• Coupling coefficient

Maxwell equations – electrokinetic coupling equations

Streaming electric currentσ∇× = = + ∇H J E L p
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Governing equations – „u-p formulation“ *
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Set of equations for all responses of the system

*Zienkiewicz et al.  Computational Geomechanics, 1999 

• Valid for a low-frequency range! – Modelling is performed by COMSOL Multiphysics.
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Model geometry

Responses illustrated as (i) snapshots at different times and 
(ii) magnetograms recorded by a surface receiver line.

Signal input is a Ricker wavelet with a centre frequency of 380 Hz.

The model features a thin clay lens in a sand background
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Snapshots at different times - seismoelectric responses

Surface: ux, Contour: Electric potential [V]

Electric field due to charge
distribution at impact
source with reversed

polarity on opposite sides
of the shotpoint

Direct field

Surface: vy, Contour: Magnetic field, z-
component [A/m]

Interface response

Surface: Mises stress, Contour: Electric 
potential [V]

Coseismic field

Conversion from seismic-
to-electromagnetic waves
at the interface – SV-wave

generates a transversal 
polarized magnetic (TM-) 

wave

Electric field travelling
with seismic wave
because of charge

accumulations due to 
streaming currents
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Seismoelectrogram – the different responses collected

Direct field

Coseismic wave

Interface response

„Direct field“ and „interface response“:
o The waves reach all receivers at virtually the same time due to the high EM-velocity!

o Signals change sign on opposite side of shotpoints

„Coseismic field“:
o Coseismic wave with the same waveform as seismic wave (hyperbolic structure)

o Signals change on opposite side of shotpoints
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Generation of electromagnetic TM – mode caused by SV - wave

Topview x–y plane

View from the front  in x–z plane

x – axisy – axis

z 
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Surface: Electric potential [V]   Contour: Mises Stress  
Heigth: Magnetic Field, z-component [A/m]

Overall view

Figures from different views at the same time ( t = 1.07 ms) 



Bernd Kröger Modelling of Seismoelectric Effects

Surface: Magnetic field, z-component ( Hz ) [A/m]   Contour: Vertical displacement SV-wave ( vy )
Left figures: Full waveform - Right figures: Zoom at the interfaces

Peak of the wave at 1st interface

Snapshots - magnetic dipoles at the interface caused by SV-waves

Peak at 2nd interface and trough at 1st interface

t = 1.07 [ms] t = 1.20 [ms]

Multipole generation

t = 1.29 [ms] t = 1.39 [ms]

Trough of the wave at 2nd interface
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Magnetogram for z-component – correlation at different times

Magnetogram Snapshots

1.07 [ms]

1.20 [ms]

1.29 [ms]

1.39 [ms]

• Magnetic dipoles are generated by vertical displacement of SV-wave

• Highest amplitudes of dipoles are correlated with peaks and troughs of the wavelet 
( SV-wave: Displacements perpendicular to direction of wave propagation!)

Peak of the wave

Peak of the wave
Trough of the wave

Multidipoles

Trough of the wave

Wavelet
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Summary

• Our finite-element algorithm („u-p formulation“) provides a reasonable
method for understanding the seismoelectric coupling. 

• Synthetic time sections of wave propagation show the interaction of the
different responses in the system.

• The direction of the streaming potential gradient induced by the seismic
wave corresponds with the direction of the generated dipole response.

• Our modelling results indicate the capability of the seismoelectric method
to detect thin layers (thickness smaller than wavelength).

What did we learn?
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Outlook

• Investigation of new geometries: downhole and crosswell surveys.

• Quantitative analysis of seismoelectric effects in 2.5D and 3D.

• Validation of the „u-p formulation“ with existing algorithms.

• Development of a seismoelectric inversion algorithm.

• Application of the seismoelectric method to determine permeabilites.

What comes next?
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Thank you for your
attention!


