Two-Dimensional COMSOL Simulation of Heavy-Oil Recovery By Using Electromagnetic Heating

Maylin A. Carrizales and Larry W. Lake

The University of Texas at Austin, Department of Petroleum & Geosystems Engineering

Why EM Heating

Process	Typical Ult. Recovery % OOIP
Steam (Drive and soak)	50-65
Combustion	10-15
SAGD	>60
Various EM	Like steam

- EM offers a wider range of application than steam injection
- EM heating has never been optimized
- Need for unconventional technology to recover hydrocarbons from non-conventional reservoirs

Why COMSOL

- Noxible for cial pling Modultip hit side up to date to Easydel Et vincenting for complex PDE formulation
- Property updating via *Sub-domain Expressions* and *Functions* using the dependent variables
- No need for finite differencing formulation, more time to focus on the equations and physics

Model Formulation

Assumptions:

- ≻Single phase (oil)
- >3 layer 2D model with axial symmetry (r,z)
- >Constant properties $(k,\rho C_t)$, except oil viscosity (μ_o) , and thermal conductivity (k_t) as a function of temperature
- >Single heating well at $r = r_w$
- Electrical properties vary only with Temperature

Model Formulation

Assumptions:

Fluid flow occurs only in the middle layer in radial direction

➤Vertical heat loss is included

Model Equations

Mass conservation equation

$$\frac{\partial}{\partial t}(\phi\rho_o) + \frac{1}{r}\frac{\partial}{\partial r}(r\rho_o u_o) = 0$$

>Darcy's Law (Momentum Equation)

$$u_o = -\frac{k_o}{\mu_o} \left(\frac{\partial p_o}{\partial r} \right) \rho_o g \nabla z$$

Andrade's Equation (1979)

 $\downarrow \quad \mu_o = De^{(F/T)}$

>Energy conservation equation for middle layer (reservoir)

$$\left(\rho C_{p}\right)_{T} \frac{\partial T}{\partial t} = -\left(\rho C_{p}\right) \left(u\right) \frac{\partial T}{\partial r} + \frac{1}{r} \frac{\partial}{\partial r} \left(k_{T} r \frac{\partial T}{\partial r}\right) + k_{T} \frac{\partial^{2} T}{\partial z^{2}} + \alpha q^{r}$$

Model Equations

Electromagnetic source equation (antenna)

$$q_{EM}(r) = \frac{P_0 e^{-\alpha (r-r_w)}}{r}$$

where

$$\alpha = 2\omega \sqrt{\frac{\varepsilon\mu'}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon\omega}\right)^2} - 1 \right]^{\frac{1}{2}}$$

Energy conservation equation for top and bottom layer

$$\left(\rho C_{p}\right)_{T} \frac{\partial T}{\partial t} = k_{s} \frac{\partial^{2} T}{\partial z^{2}}$$

COMSOL Method

➢PDE application, general form

Primary variables: Pressure (p), and Temperature (T)

➤Use of symmetry, and appropriate form of the equations in radial coordinates (r,z) to simulate flow to a wellbore

>Use of sub-domain expressions to update the oil viscosity (μ_o), and the absorption coefficient (α) with Temperature

Integration of boundary variables to calculate the oil rate produced

Results Simulation_ Validation

2. 2D COMSOL vs. STARS (Reservoir Simulator)

Pressure @ t = 100 days

2009 COMSOL Conference, Boston, MA

Results Simulation_ Validation

2. 2D COMSOL vs. STARS (Reservoir Simulator)_Cold Production Case

Pressure

Oil rate

Results Simulation_ EM Heating Temperature @ 50, 360, and 1000 days Timperature ("F) Mai 313.974 Mac: 313.9/4 Temperature [⁰F] 80 120 140 100 100 120 140 160 Min: 100.09 Mtp: 100.08 Min: 100.08 Pressure Mar. 170.003 100 120 140 Min: 215 2009 COMSOL Conference, Boston, MA Mn: 215

Conclusions and current work

COMSOL has been successfully used to model single-phase flow of heavy oil by EM heating

➤COMSOL implementation was validated with analytical solutions.

Comparison with a commercial reservoir simulator results for a cold fluid production case showed good agreement

➤This work is currently being extended to model multiphase flow during EM heating