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RESONANCE FREQUENCY AND Q CONTROL
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• Control of resonance parameters

 High-precision resonant sensors[4-7]

• Mode-matched gyroscopes

• Resonant accelerometers

 Tunability of timing elements

• Mechanical oscillators and filters

 Fast response time in actuators[2]

• Atomic force microscopes

Dynamic electromechanical feedback enables bidirectional real-time tuning of both 
the resonance frequency and quality factor regardless of transduction mechanism

Termination impedance Tuning[1] Laser trimming[3]

Electrostatic tuning[4] Dynamic feedback tuning[7]



DYNAMIC FREQUENCY TUNING
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Displacement-proportional force changes the effective stiffness!



DYNAMIC QUALITY FACTOR TUNING
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COMSOL S IMULATION SETUP
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• Multiphysics simulation for the AlN-on-Si 
MEMS resonator with feedback

 Solid Mechanics Interface: Solve equations of 
motion in both the AlN and Si domains

 Electrostatics Interface: Solve Gauss’s law in 
the AlN domain

 Global ODEs and DAEs Interface: Store the 
output current value to implement feedback

• Eigenfrequency and Parametric 
Frequency Domain studies

• Square structure to support the second-
order in-plane flexural vibration mode

VTune

Vin VTune

IOut



FEEDBACK IMPLEMENTATION IN COMSOL
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• Output current signal 𝑖𝑂𝑢𝑡 is defined by surface integration 
of the current density on the output electrode.

• Global ODEs and DAEs interface is used to store the output 
current value which is in turn used to compute the 
displacement/velocity feedback signal.

• The nojac() operator must be applied to the stored solution to 
avoid changing the Jacobian matrix.

𝑉𝑡𝑢𝑛𝑒, 𝑓 = 𝑛𝑜𝑗𝑎𝑐 𝑖𝑂𝑢𝑡1 × 1𝑗 × 𝑔𝑎𝑖𝑛

𝑉𝑡𝑢𝑛𝑒, 𝑄 = 𝑛𝑜𝑗𝑎𝑐 𝑖𝑂𝑢𝑡1 × 𝑔𝑎𝑖𝑛

Global ODEs and DAEs interface and the nojac() operator are key additions to the 
Piezoelectric Multiphysics for implementation of the feedback channel.



FREQUENCY TUNING – SIMULATION RESULTS

6

• Displacement feedback applied by phase shifting the 
output current signal by 90°

• Resonance frequency is controlled by changing the 
displacement feedback gain parameter

F xf

kD

+



Q TUNING – SIMULATION RESULTS
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• Velocity feedback applied as a signal proportional 
to the output current signal

• Quality factor is controlled by changing the velocity 
feedback gain parameter

F vf

bD

+



ALN-ON-SI MEMS RESONATOR
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• Square resonator with a network 
of side-supporting tethers for 
electric signal routing

• Aluminum Nitride sandwiched 
between top and bottom 
Molybdenum electrodes and 
stacked on top of the Silicon 
device layer

• Second order in-plane flexural 
vibration mode at ~5.9 MHz with 
a Q of ~2900 and IL of ~40 dB



DIGITAL INTERFACE ARCHITECTURE
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FREQUENCY TUNING – EXPERIMENTAL RESULTS
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• Dynamic frequency tuning technique is verified experimentally by adjusting the 
displacement feedback gain.

• Resonance frequency of the piezoelectric resonator is tuned in both directions by 
~400 ppm.



Q TUNING – EXPERIMENTAL RESULTS
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• Dynamic quality factor tuning technique is also verified experimentally by 
adjusting the velocity feedback gain.

• Quality factor is tuned from 1800 to 6300 for the piezoelectric resonator with the 
reference Q value of 2900.
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