Effect of Duty Cycle Variation on Acoustic Pressure Field Simulation in an Ultrasound Bioreactor

COMSOL CONFERENCE 2018 BOSTON

SAINT LOUIS UNIVERSITY

PARKS COLLEGE OF ENGINEERING, AVIATION AND TECHNOLOGY

Abdolrasol Rahimi, Jacob Crapps, Natasha Case Biomedical Engineering, Saint Louis University Saint Louis, MO

Introduction

- Low intensity pulsed US treatment shows positive role in the bone fracture repair.
- Transducer delivers ultrasound waves to fracture site.
 - ☐ Promotes new bone formation
 - ☐ Cost effective, no side effect
 - LIPUS protocol: 200 μs burst of 1.5 MHz sine waves followed by 800 μs inactive period at 30 mW/cm² spatial average and temporal average (SATA) intensity.
 - ☐ FDA in 2000 for bone fracture treatment.

Harrison et al., Ultrasonics (2016)

Introduction

- >US bioreactor as a tool to study bioeffects of therapeutic US in vitro
- Computational modeling is a valuable approach to study US wave propagation in the bioreactor.

Methods

- □ COMSOL Multiphysics software (V5.3)
- ☐ Piezoelectric Ultrasound Transducer

Methods

☐ Piezoelectric Properties: Lead Zirconate Titanate

Stress Charge form

$$[T] = [c_E][S] - [e^T][E]$$

$$[D] = [e][S] - [\varepsilon_s][E]$$

- c_E Elastic Coefficients [Pa]
- e^T Transposed Coupling Matrix [C/m²]
- e Coupling Matrix [C/m²]
- ε_s Permittivity Matrix [F/m]

Methods

- ☐ Three Physics were implemented:
 - Electrostatics interface

$$D = \varepsilon_0 E + P$$
 and $E = -\nabla V$

Solid

Time dependent simulation over one pulse is required to study pulsed US treatment.

* Pressure Acoustics interrace

$$\nabla \cdot \left(-\frac{1}{\rho}\nabla p\right) - \frac{\omega^2 p}{\rho^2 c^2} = 0$$

- D Displacement Field [C/m²]
- ε_0 Permittivity of Vacuum [F/m]
- E Electric Potential [V]
- P Polarization Vector [C/m²]
- **VV** Electric Potential Gradient [V]
- T Stress Tensor [Pa]
- C Elastic Coefficient [Pa]
- S Strain Tensor [m.m⁻¹]

 ρ Density [Kg/m³]

- ω Angular Frequency (rad/s)
- Acoustic Pressure [Pa]
- Pressure Wave Speed [m/s]

- Acoustic pressure pattern over 1 pulse (i.e. 1 ms) for 20% duty cycle
 - * Time to reach maximum value: 125 μs

All graphs shows spatially average acoustic pressure at the dish surface.

 $t_{\text{water}} = 3.1 \text{ mm}, t_{\text{medium}} = 3.4 \text{ mm}$

- ☐ Acoustic pressure pattern over 1 pulse (i.e. 1 ms)
 - * Time to reach maximum value: 125 μs add distance and culture medium height

- □ Evaluate the acoustic pressure field in the presence of the acoustic absorbent.
 - *Perfectly Matched Layer was used to model the acoustic absorbent material.

*Results are normalized to the maximum pressure in the original configuration

□ 0.375 mm increase in the water layer thickness.

Decrease in the acoustic pressure at the dish surface by

- 5.2-fold in the original configuration
- ❖ 1.8-fold in the modified configuration

Effect of duty cycles variation using time-dependent simulation

Summation of the total acoustic pressure	
20% / 10%	50% / 10%
1.6	3.7

Summation of the total acoustic pressure	
20% / 10%	50% / 10%
1.9	4.3

Summary & Conclusion

- Using time-dependent simulation, contribution of the standing waves in the active and inactive period of the pulsed US signal was analyzed.
- Addition of the acoustic absorbent layer to eliminate reflection at the air interface resulted that the pressure pattern more closely followed the applied pulsed US signal.
- ☐ Increase in the duty cycle did not produce a similar increase in the total average acoustic pressure.

 The acoustic pressure did not reach the maximum pressure level at 10% duty cycle in the original

configuration.

Future Studies

- ☐ Developing a model including cell monolayer.
- ☐ Analyzing US wave propagation in the 3D porous scaffolds

Acknowledgement

- ☐ Dr. Case (advisor)
- ☐ Parks College of Engineering, Aviation and Technology for graduate assistantship and funding.

Thank you