

Numerical modeling

that predicts, optimizes and innovates

Adaptive mesh refinement: Quantitative computation of a rising bubble using COMSOL Multiphysics®

T.Preney, J.D. Wheeler and P.Namy SIMTEC- (+33) 9 53 51 45 60 patrick.namy@simtecsolution.fr

COMSOL CONFERENCE 2018 BOSTON

Need to accelerate your calculations?

 The mesh: fundamental pillar of numerical computation on which the approached solution is built

• A high concentration of nodes is needed where the gradients are important

→ May induce large computational times!

Introduction

<u>Definition</u>: To adapt the mesh to the solution as time goes by

→ More efficient computation

Working with SIMTEC

Industry Challenges

- R&D sections: experts in their field
 - → Expertise in numerical modelling?
- Lack of time
- FE modelling performed by a small group of people

SIMTEC's Solutions

- Numerical modelling project
 - → SIMTEC's member as your colleague
 - → Help improve your modelling knowledge!
 - → Cost-effective outsourcing

Our team & Our clients

Numerical Modelling Consultants

6 Members all EngD + PhD

- Extensive research background
- Complex problems
- various fields of expertise

Successful Track Record:

- Big international compagnies
- Government laboratories

Involved in Research Consortia

- EU funded projects (REEcover / SHARK)
- PhD projects supervision.

Jean-Marc Dedulle

Vincent Bruyère

Jean-David Wheeler

Elise Chevallier

Maalek Mohamed-Said

SIMTEC: 15 years of building expertise...

Plan

I. General principle

II. 2D validation study

III. 3D validation study: comparison with other softwares

Introduction

Especially useful for a time-dependent study!

Example: transport of a concentration in water

→ Concentration front propagation

Introduction

Idea: Refine the mesh where the concentration gradient norm is important

About the concentration:

Question: How will the mesh evolve?

Question: Where will the mesh be adapted?

→ The user specifies an error indicator (usually a gradient norm)

Effect: Mesh refinement where the error indicator function is important

Double calculations sweep

- First calculation : estimation of the error indicator on the coarse mesh
 To determine spatial areas where the indicator is important
- 2. Mesh refinement on those areas
- 3. Second calculation: computation of the solution on the (now) refined mesh
- 4. Back to step 1

Double calculations sweep

- 1. First calculation: estimation of the error indicator on the coarse mesh
- 2. Mesh refinement where the error indicator is important
- 3. Second calculation: computation of the solution on the refined mesh
- 4. Back to step 1 at the end of the time interval

Double calculations sweep

- 1. Estimation: low precision calculation on coarse mesh
- 2. Mesh adaptation
- 3. Precise calculation on refined mesh

Computation Computation Computation Computation

II – 2D Study

Public benchmark available at

http://www.featflow.de/en/benchmarks/cfdbenchmarking/bubble.html

Reference paper:

Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L.: <u>Quantitative benchmark computations of two-dimensional bubble dynamics</u>, International Journal for Numerical Methods in Fluids, Volume 60 Issue 11, Pages 1259-1288, DOI: 10.1002/fld.1934, 2009

II – 2D Study

Configuration

Rise of a bubble of gas inside a fluid

- 2D geometry
- Laminar flow modelled by Navier-Stokes equations
- Two-phase flow with a phase-field approach

Extract: reference paper

Study parameters

$\rho_1 \left(kg.m^{-3} \right)$	$\rho_2 \left(kg.m^{-3} \right)$	$\mu_1 (Pa \cdot s)$	$\mu_2 (Pa \cdot s)$	$g\left(m.s^{-2}\right)$	$\sigma\left(N\cdot m^{-1}\right)$
1000	1	10	0,1	0,98	1,96

Equations and boundary conditions

Laminar flow with Navier-Stokes equations

$$\begin{cases} \rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \vec{\nabla}) \vec{u} \right) = \rho \vec{g} - \vec{\nabla} p + \mu \Delta \vec{u} \\ div(\vec{u}) = 0 \end{cases}$$

Phase-field method to simulate two-phase flow

Principle : Use a dimensionless phase field variable φ that can take values in $\{-1,1\}$ according to the phase represented

- Fluid 1 : $\varphi = -1$
- Fluid 2 : $\varphi = 1$

The physical interface is characterised by $\varphi=0$

20

II – 2D Study

Two test cases: fixed mesh and adaptive mesh

Fine mesh Adaptive mesh

Mesh type	Mesh element size	Number of degrees of freedom	Computational time
Fixed	$6.4 * 10^{-3} m$	260 000	75 minutes
Adaptive	$5.4 * 10^{-3} m$	250 000	15 minutes $\sqrt{5}$

→ Massive acceleration!

What about accuracy?

Results: bubble shape and comparison

→ Good adequacy generally ...

... but some details vary (satellites)

Quantitative comparison criteria

1. Position of centre of mass of the bubble $\, \overline{y} = \frac{1}{|\Omega|} \int_{\Omega} \, y \, \, dS \,$

where
$$\Omega = \{X \in \mathbb{R}^2 \mid \varphi(X) \ge 0\}$$
 and $|\Omega| = \int_{\Omega} dS$

2. Mean rise velocity
$$\bar{v} = \frac{1}{|\Omega|} \int_{\Omega} v \, dS$$

II – 2D Study

Results: comparison with the benchmark

II – 2D Study

Results: comparison with the benchmark

Numerical modeling

that predicts, optimizes and innovates

III – 3D study

Configuration

3D generalisation of the 2D case

Extract : reference article

From the reference paper

- J. Adelsberger, P. Esser, M. Griebel, S. Groß, M. Klitz, and A. Rüttgers.
- 3D incompressible two-phase flow benchmark computations for rising droplets.
- 2014. Proceedings of the 11th World Congress on Computational Mechanics (WCCM
- XI), Barcelona, Spain, also available as INS Preprint No. 1401 and as IGPM Preprint No. 393.

Numerical validation

Total mass variation < 0,2%

III – 3D study

Comparison with two CFD software

- NaSt3D
- OpenFOAM

Computational times

COMSOL Multiphysics® (adaptive mesh)	22 h on 2 cores at 4,16 GHz	
NaSt3D (maillage fixe)	1 week on32 cores at 2,226 GHz	
OpenFOAM (maillage fixe)	2,5 days on 32 cores at 2,226 GHz	

Results: comparison with the benchmark

Mesh visualisation (left) streamlines (right) interface (in red)

Results: comparison with the benchmark

Mesh visualisation (left) streamlines (right) interface (in red)

Results: comparison of the bubble shape at t=3,5s

Conclusion

- Principle of the adaptive mesh refinement method: accelerate calculations while improving accuracy
- Comparison with results from literature and others CFD software :
 validation of the method
- Practical applications on industry topics:

Laser piercing

Additive fabrication

Numerical modeling

that predicts, optimizes and innovates

Thanks a lot! Q&A

T.Preney, J.D. Wheeler and P.Namy SIMTEC- (+33) 9 53 51 45 60

patrick.namy@simtecsolution.fr

