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Abstract: In Comsol Multiphysics it is possible 
to implement and simulate several independent 
models in parallel. This can be meaningful when 
the different models are coupled to each other by 
some kind of interaction. If a part of the 
geometries is identical in all models, this part 
can be reduced in that it is implemented in only 
one of the geometries. In the other geometries 
only its solution towards its surrounding is used. 
The paper presents the application of a power 
cable going through different thermal 
environments. The cable has the same cross-
section and current in all submodels. As the 
surrounding sections are short there is thermal 
flow in axial direction between the sections. 
Taking that flow into consideration improves the 
temperatures calculated for each section. 
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1. Introduction 
 

Consider a power cable in ground or sea. The 
termination above ground or sea surface is the 
most critical part from a thermal point of view. 
The hot-spot temperature in the termination is 
the dimensioning factor for the conductor cross-
section. Normally the same cross-section is used 
for the whole cable length. Accurate 
temperatures calculations are needed for the 
termination. The termination often consists of 
different short sections implying thermal 
interaction in axial direction that cannot be 
neglected for precise thermal calculations [1]. In 
Comsol it is possible to create a model for each 
section in the same overall model and to couple 
them to take into account their interaction. The 
required calculation resources increase with the 
number of modeled cross-sections. This implies 
a limitation for realistic applications, where the 
multiphysical behavior of detailed cross-sections 
is simulated. For instance a power umbilical 
contains one or more 3-phase power and signal 
cables, fiber optics, steel rods and fluid pipes in a 
support structure with holes [2]. Often the 

resistive heating due to load current is calculated 
where the skin effect in the conductors, eddy 
currents in the cable screens and metallic rods 
and tubes are taken into account. This makes the 
model to a complex multiphysical model. For 
cables with temperatures clearly higher than 
20ºC the temperature coefficient of current-
carrying parts has to be taken into account to 
obtained realistic losses and thus heating. Often 
worst-case scenarios are considered with 
maximum allowed conductor insulation 
temperature of 90ºC. The paper shows that the 
multiphysical cable model needs to be 
implemented only once. The different cable 
surroundings are implemented without the cable 
geometry as purely thermal models. Apart from 
dramatically reducing calculation resources it 
also reduces the time for implementing the 
model for a given case to a fraction. That in turn 
reduces the risk for making mistakes during 
modeling. Another modeling optimization with a 
few similarities can be found in [3]. 

 
2. The modeling approach 

 
Modeling consists of the following steps. 

One of the sections is chosen and modeled as if 
that section was infinitely long. It contains the 
power cable and the surrounding of this section. 
That results in a common 2D model in Cartesian 
coordinates that can be simulated. The geometry 
can be very detailed and in addition a 
multiphysical model. 

The model is extended by adding a second 
geometry for the surrounding of a neighboring 
section. This section is modeled as a thermal 
model. Whereas the thermal conditions on the 
outer boundaries are given for the section, the 
power cable is reduced to its outer surface 
boundary conditions. The cable losses per meter 
due to electric current are calculated by the first 
cross-section and thus available. These losses are 
the same in each section as the currents are the 
same according to Kirchhoff’s current law. 
These losses are injected into the inner boundary 
of the second geometry. The second model 
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calculates the resulting temperatures. The 
temperature on the cable outer surface differs 
between the two sections whereas the 
temperature gradient in both cables is the same 
as the cable losses are independent of the 
sections. Taking into account the temperature 
offset between the two cable sections the heat 
flow ∆Q in a copper conductor in axial direction 
between the two modeled sections is calculated 
by means of a global equation. The equation uses 
the conductor cross-sectional area and the 
lengths of the two modeled sections. These 
parameters are given and can be entered in 
Comsol as constants. Often power cables are 
arranged symmetrically about a centre axis. Then 
the axial heat flow is the same in all three 
conductors, which means that only one global 
equation is required for the three power cores. 
The axial heat flow in metallic parts not made of 
copper can often be neglected as their thermal 
conductivity is about 10 times lower. The axial 
heat flow from the first to the second section is 
subtracted from the first cable boundary surface 
and added on the cable surface in the second 
section. If the heat flow is positive it will 
contribute to cooling of the first section and 
heating of the second section. This gives more 
realistic temperatures in both sections. 

 The second step is repeated for the section 
on the other axial side of the first geometry. If 
there are further sections the second step is 
repeated for each new section, where a new 
global equation is introduced for the heat flow to 
the adjacent section. 

The loss q0 is the loss per meter of the cable 
due to the electric current. This value is the 
similar in all sections. The heat flow in the 
copper conductor in axial direction between two 
sections is obtained by the temperature 
difference ∆T between two sections and the 
thermal resistance of the copper conductor: 
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The thermal resistance is given by the 
thermal conductivity λ of copper, the length of 
the thermal path d and the cross-sectional area of 
the copper conductor ACu. 
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The distance d is the distance between the 
axial centers of the two sections. 
 

 
 
Figure 1. Definition of section distances used in 
model. 

 
For two sections with length l1 and l2 the 

distance is: 
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The temperature difference ∆T is the 

difference of the temperatures in the axial middle 
of the two sections: 

 
∆T =T1 - T2        (4) 
 
As the heat flow through the copper 

conductor is calculated the temperatures T1 and 
T2 are measured as integration variables in the 
conductor. But the conductor temperature can 
only be measured in a geometry where it is 
modeled. As the cable cross-section is inserted 
into only of the model geometries, the 
temperature has to be captured on the cable outer 
surface as that exists in all modeled geometries. 
In order to eliminate temperature variations on 
the cable outer surface the mean surface 
temperature is obtained by integration coupling 



boundary variables divided by the length of the 
boundary. 

In the first section the obtained axial heat 
flow ∆Q is added to q0 and in the second section 
it is subtracted from q0. The sign of ∆Q is 
obtained by Comsol. For a section i with length li 
the total normal heat flux through the cable outer 
surface into the surrounding is: 
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Figure 2. Heat flow between two sections. 
 
Denoting T1 as conductor temperature and T’1 as 
surface temperature for section with cable 
geometry extrapolates the unknown conductor 
temperature T2 for a neighboring section without 
cable geometry as: 
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Inserting (6) in (4) and (5) this gives a quadratic 
equation x2+px+q=0 in ∆Q12 with solution 
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In Comsol this solution is inserted as a global 

equation for ∆Q12. Including the conductor 
temperature coefficient αCu and the ambient 
temperature of that section a second global 
expression is required using T2 as input: 
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3. A practical application in Comsol. 
 
3.1 The model parameters. 
 

A standard three-phase power cable goes 
through three sections as shown in Fig. 1. The 
cable comes out of cold ground (section 3). It is 
fixed and supported by means of a resin box 
(section 1). Between the box and ground the 
cable is protected by an air filled PVC tube 
(section 2). On the top of the PVC box the three 
single cable cores come out of resin box and are 
cooled by surround air with constant 
temperature. 

Fig. 2 shows the detailed cross-section of the 
cable in an air-filled tube (section 2). The top 
and bottom sections, section 1 and section 3, are 
only modeled as circular and quadratic 
surroundings, respectively, see Figures 5 to 7. 

  

 
 
Figure 2. Power cable in air with protection tube. 

 
For this paper the detailed material properties 

and dimensions are not of interest. Important is 
that the same cable and surroundings were used 
for the conventional model and the new model. 
The dimensions can be seen in Fig. 2 to 7. The 
electrical and thermal properties of the used 
materials copper, PE and PVC are commonly 
known. For the resin box PE was used for 
simplicity. Concrete and ground was modeled 
with a thermal conductivity of 1W/K·m. The 
ambient temperatures are 30ºC in air and 10ºC in 
ground. 



Instead of a purely thermal model the losses 
of a 3-phase current with phase shifts of 120º 
were simulated. Skin effect in the conductors and 
eddy currents in the cable metallic screens were 
included. As the cable temperature considerably 
differs from 20ºC the temperature coefficient 
was also modeled. 

The three cables cores coming out of the top 
of the termination box are surrounded by air. 
They do not require any model geometry, merely 
one common global equation for the axial heat 
flow. The thermal resistance of one cable 
conductor to air through the cable insulation can 
approximated by an infinite ladder, which in turn 
results in a known simple equation [4]. 

 
3.2 Resulting temperatures. 
 

Figures 4 to 7 illustrate the temperatures 
calculated with the new model for a 20cm long 
box, a 0.5m long tube and a 5m deep ground 
section. The cables conductors in the tube are 
cooled by the neighboring sections to 67ºC from 
77ºC without interaction (see later Fig. 9). 

 

 
 

Figure 4. Power cable in protection tube in air 30ºC. 
 

 
 

Figure 5. Termination box in air 30ºC. 

 
 
Figure 6. Betonite-filled duct in ground 10ºC. 

 

 
 

Figure 7. Zoom of betonite-filled duct in Fig. 6. 
 
3.3 Accuracy of Results 
 

The large ground surrounding in Fig. 6 
without the detailed cable geometry overcomes 
Comsol’s limitation for meshing. The overall 
size should not exceed 1000 times the smallest 
detail. 

Figures 8 to 11 show that the cable 
temperature depends on the section length, which 
justifies taking the axial thermal coupling into 
account. For simplicity all sections have the 
same length. For very short sections the 
conductor temperature is the same in all sections 
and for very long sections the thermal coupling 
between the sections vanishes and the 
temperatures approach asymptotic values. 

Fig. 8 shows temperatures for two simulated 
sections. In Case 1 the heat flows from the tube 
to the resin box, in Case 2 to the ground section. 



As the model is linear the new model fully 
agrees with the conventional model. 

Fig. 9 shows the result for three sections with 
same length including the temperature 
coefficient of the current carrying copper 
conductor. As a result all temperatures are higher 
than in Fig. 8. In Fig. 9 the agreement with the 
conventional model is not high. Taking into 
account the temperature coefficient according to 
(9) still does not give perfect agreement, see Fig. 
10. The reason is that ∆Q12 and ∆Q23 were 
derived above for thermal coupling between two 
neighboring sections but implemented in a model 
with three sections. In order to obtain the correct 
solution for three sections two unknown ∆Q12 
and ∆Q23 have to be solved analytically before 
inserting as global equations into Comsol. It is 
commonly known how to solve the resulting 
third order polynomial. The approach is similar 
to the quadratic equation above. Similarly, 
thermal interaction between four sections would 
yield a polynomial of fourth order with three 
solutions to be entered as global equations into 
Comsol. 

A simple manipulation is illustrated in Fig. 
11. For very short sections the temperature has to 
be the same in all conductors. The inverse of the 
section length was used as weight for the mean 
value of simulated temperatures. However, this 
approach is somewhat manual as is has some 
degrees of freedom. 

 

 
 
Figure 8. Two sections. Cable conductor temperature 
in tube and resin box. Conventional model (black 
dashed) and new model (red). 

 
 

 
 
Figure 9. Three sections. Cable conductor 
temperature. Conventional model (black dashed) and 
new model (red). 
 

 
Figure 10. Fig. 9 with temperature coefficient also in 
sections without cable geometry. 
 
 

 
Figure 11. Fig. 10 manipulated by use of mean 
temperature for very short section lengths. 
 
 
 



3.4 Convergence, Required Memory and 
Calculation Time 

 
For the length sweep in Figures 8 to 11 there 

were no convergence issues with the new model 
but with the conventional model. That was 
improved by starting with high lengths where the 
axial flow is low compared to the cable loss. 

The conventional model required the solver 
Paradiso Out of Core whereas the new model 
worked well with Spooles. Fig. 12 shows that the 
new model calculates about five times faster than 
the conventional model. The purely thermal 
model (left) needs little time and the electro-
thermal model including temperature coefficient 
in the conductor is the slowest model (right). 
 

 
Figure 12. Required simulation time by new model 
(red) and conventional model (black). Thermal model, 
electro-thermal model and electro-thermal model with 
temperature coefficient. 
 
4. Further Improvements 

 
If the material thermal properties in the 

surrounding of one section significantly changes 
in axial direction, the surrounding cross-section 
can be replaced by an axial symmetric profile. If 
for instance the termination box in Fig. 5 is 
mechanically supported by an integrated steel 
plate the profile may look as in Fig. 13.a). The 
thermal result in Fig. 13.b) confirms that such a 
steel plate would imply considerable cooling in 
the upper part of the section. This model 
improvement did not increase the simulation 
time nor memory use. 

 

 
 

Figure 13. Profile of termination box including a steel 
plate for mechanical support. a.) Materials b.) 
Calculated temperatures. 
 
5. Conclusions 

 
The paper showed that the model 

simplification reduces calculation time to a 
fraction. Also the memory requirement is 
considerably reduced, which is important for real 
detailed cross-sections that would require too 
much memory if implemented several times. 

For linear materials the results are the same 
as for the conventional model. That requires, 
however, implementing the zeros of a 
polynomial. The degree of the polynomial is the 
same as the number of sections. That involves 
larger expressions for more sections. If the 
model is non-linear, e.g. due to the temperature 
coefficient of the current carrying conductor, the 
results are still useful but the accuracy is not 
perfect any more. It can be increased by defining 
dependent global expressions plotted at post-
processing, which can be done conveniently. 
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