

Investigations on Hydrodynamic in a Stirred Tank for Educational Purposes

Attila Egedy, Tamás Varga, Tibor Chován University of Pannonia, Department of Process Engineering Veszprém, Hungary

COMSOL User Conference Stuttgart 26-28, October 2011

- Introduction
- Governing equations
- Modelling and method
- Results
- Education
- Conclusions

- Investigate on mixing in a batch stirred tank
- Macromixing phenomenon
- Fluid dynamics education
- Fluid dynamics research
- Design, and optimization support

Governing equations

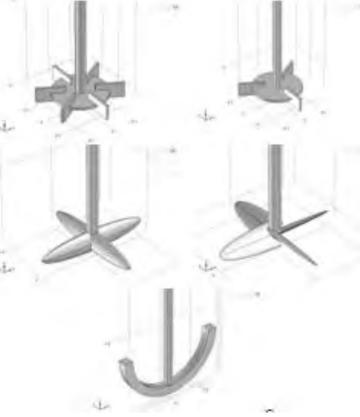
Navier-Stokes model

$$\rho \frac{\partial u}{\partial t} + \rho(u \cdot \nabla)u = \nabla \cdot \left[-pI + \mu \left(\nabla u + (\nabla u)^T \right) - \frac{2}{3} \mu(\nabla u)I \right] + F$$

Two-variable k-ε model

$$\rho \frac{\partial u}{\partial t} + \rho(u \cdot \nabla)u = \nabla \cdot \left[-pI + (\mu + \mu_T)\left(\nabla u + (\nabla u)^T\right) - \frac{2}{3}(\mu + \mu_T)(\nabla u)I - \frac{2}{3}\rho kI\right] + F$$

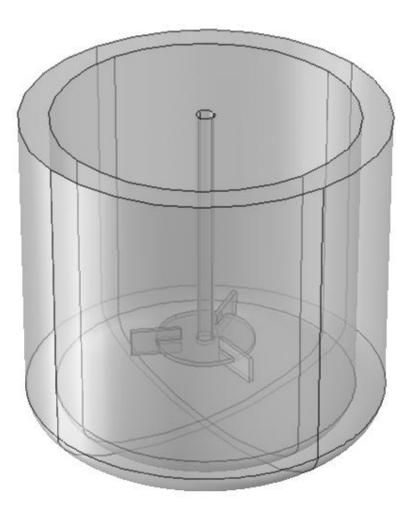
$$\rho \frac{\partial k}{\partial t} + \rho(u \cdot \nabla)k = \nabla \cdot \left[\left(\mu + \frac{\mu_T}{\sigma_k} \right) \nabla k \right] + P_k - \rho \varepsilon$$
$$\rho \frac{\partial \varepsilon}{\partial t} + \rho(u \cdot \nabla)\varepsilon = \nabla \cdot \left[\left(\mu + \frac{\mu_T}{\sigma_e} \right) \nabla \varepsilon \right] + C_{\varepsilon 1} \frac{\varepsilon}{k} P_k - C_{\varepsilon 2} \rho \frac{\varepsilon^2}{k}$$



Modelling and method

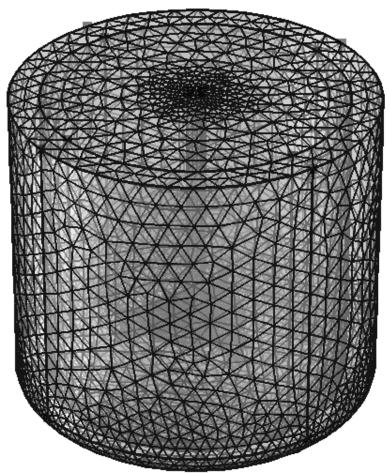
Three different tank geometries

- Flat bottom
- Round bottom
- Ellipsoid bottom
- Six different impeller geometries
 - Three and six bladed turbine
 - Blade and 45° blade impeller
 - Propeller and Anchor impeller
- Three different revolution speeds
 - 20, 50 and 100 1/min



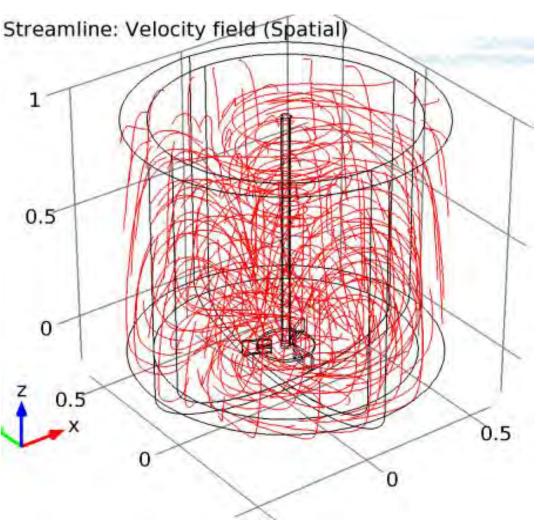
Modelling example

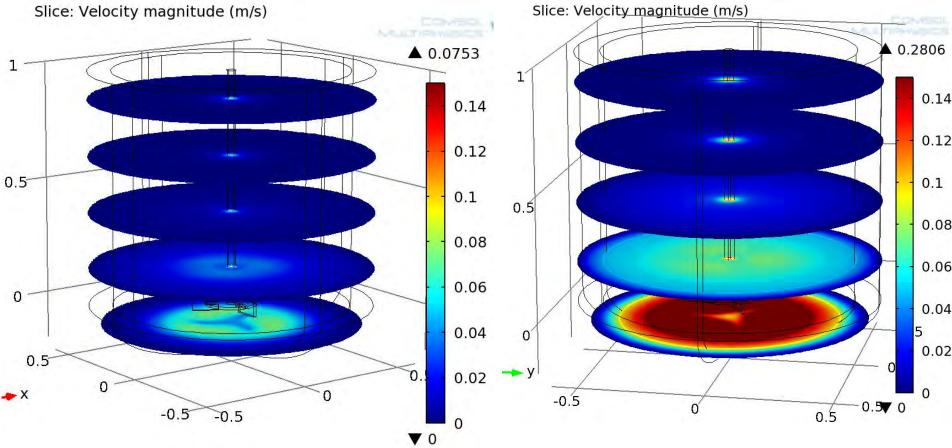
- Three bladed turbine impeller
- Ellipsoid bottom tank
- Counterclockwise
 revolution
- Liquid mixing



Modelling example

- Rotating machinery
 - Laminar
 - Turbulent
- Moving mesh model in 3D
- ~100k tetrahedral mesh element
- ► ~750k degrees of freedom
- Transient analysis, direct or iterative solvers


- Direct solvers at high speeds, iterative solvers at lower speed
- COMSOL version 4.1 was used
- Intel Xeon W3530 computer was used for computation 16 GB RAM
- Solutions last from 6 hours-to 100 hours


- Streamline results
- xy slice results
- ► 3D avi animations

- Open-access website to examine the results
- Introduction to Computational Fluid
 Dynamics, and COMSOL Multiphysics
- Results on streamline plot
- Animations of mixing via youtube channel
 Macromixing

Education website

University of PANNONIA 1

ON EGYEI Mérnöki k

Fluid Dynamic examination of stirred systems using COMSOL Multiphysics

maqyarul

About Mixing Computational Fluid Dynamic models Description of the application Access to the applications

About Mixing

Introduction

The stirred vessel is one of the most widely used devices in the industry. There are several way to sort chemical reactors, for example by operation (batch, half-continuous, continuous), or by the used impeller type (turbine, jet, blade etc.). The mixing system of the vessel is always an important angle

http://pr.mk.uni-pannon.hu/disszeminacio/keveres.html

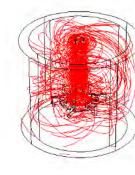
Query form

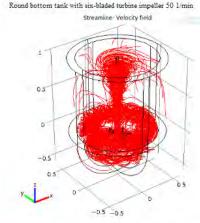
🗋 jokimkuni-pannoni.hu/diss

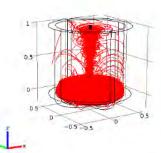
Flat bottom tank with six-bladed turbine impeller 50 1/min

Fluid Dynamic examination

MAGYARUL

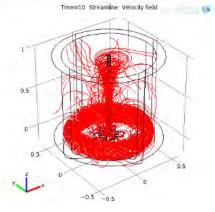

- Flat bottom
- □ Round bottom
- F Ellipsoid bottom


Impeller type


- C Six-bladed turbine
- C Three-bladed turbine
- Blade
- ← Anchor

Revolution speed

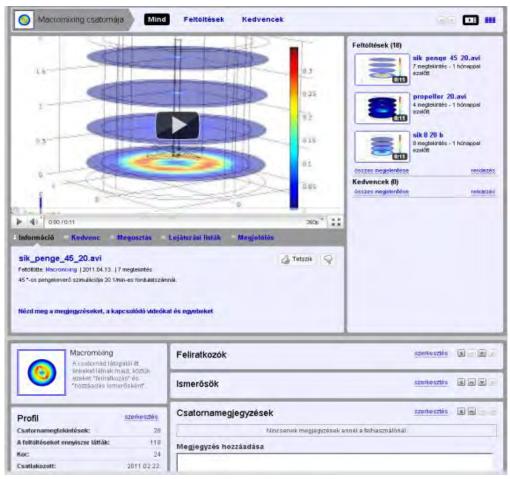
- □20
- F 50
- □ 100


Ellipsoid bottom tank with six-bladed turbine impeller 100 1/min

Ellipsoid bottom tank with six-bladed turbine impeller 50 1/m

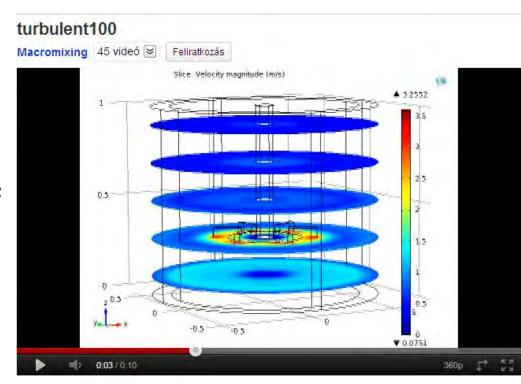
Streamline- Velocity field

Flat bottom tank with six-bladed turbine impeller 100 1/min


- Round bottom tank with six-bladed turbine impeller 100 1/min Streamline: Velocity field

http://pr.mk.uni-pannon.hu/disszeminacio/keverok/index.php

YouTube channel


http://www.youtube.com/user/Macromixing

Conclusion

- Several geometries
- Different impellers
- Educational website
- Open access results
- YouTube videos

Future plans

- Higher revolution speeds
- Static part attached to the stirred system
- Multi impeller systems
- Continuous systems
- Model validation

This work has been supported in part by the TAMOP-4.2.2/B-10/1-2010-0025 project.

Thank you for your attention!