
Numerical Experiments for Thermally-induced Bending

of Nematic Elastomers with Hybrid Alignment (HNEs)

Antonio DeSimone1, Luciano Teresi2∗
1SISSA-ISAS – International School for Advanced Studies, Trieste, Italy

2∗LaMS – Modelling & Simulation Lab, Università Roma Tre, Roma, Italy
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Abstract: The nematic elastomers with hybrid
alignment (HNEs) exhibit large anisotropic and
non homogeneous volume changes, which can in-
duce noticeable changes in their configuration.
Here, we deal with LCEs having hybrid align-
ment (HNEs), that is, fabricated with a given
non-homogeneous nematic orientation. For such
a materials, permanent distortions induced by
deswelling can be compensated by those resulting
from cooling below TN ; it results the possibility of
producing temperature-driven actuators.
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1 Introduction

Liquid crystal elastomers (LCEs) possess very in-
teresting properties stemming from the interaction
between liquid crystal order and rubber elasticity
[1]. For such materials, thermally-induced phase
transition from the isotropic to the nematic phase
may induce very large distortions, see Figure 1,
which, in turn, can affect the overall configuration
of a macroscopic specimen.

A particular class of LCEs features two sorts of
large anisotropic phase transitions: the first one is
a deswelling due to solvent evaporation, that mani-
fests during preparation; the second one, thermally
induced, is due to an isotropic-nematic phase tran-
sition. Both phenomena can produce noticeable
changes of configuration in a given specimen, but,
while deswelling induces permanent changes, the

isotropic-nematic phase transitions are reversible:
cooling below a transition temperature TN pro-
duces the nematic phase, whose effects become
larger as the temperature decreases; heating above
TN restores the isotropic one.

Here, we deal with LCEs having hybrid align-
ment (HNEs), that is, fabricated with a given
non-homogeneous nematic orientation. For such
a materials, permanent distortions induced by
deswelling can be compensated by those resulting
from heating; it results the possibility of producing
temperature driven actuators. See [3] for a detailed
description about preparation of HNEs, and exper-
imental results.
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Figure 1: If the stress-free shape of a mesoscopic
chunk of LCE is a spherical ball when the ap-
pended mesogens are in the disordered, isotropic
phase (left), its stress-free shape in the ordered, ne-
matic phase is a prolate spheroid whose polar axis is
aligned with the prevailing mesogen direction. LC
molecules are caricatured grossly out of scale.
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2 The physical model

We model the HNEs in the framework of 3D incom-
pressible non-linear elasticity with large distortions
[2]. We represent the nematic orientation with the
nematic tensor field1 N :=n⊗n, with n a unit vec-
tor field (|n| = 1); the elastomer distortions we deal
with are uniaxial stretch aligned with mesogen ori-
entation N:

Uo = λ‖N + λ⊥ (I−N) , (2.1)

where I is the identity, and the scalars λ‖, λ⊥ rep-
resent the magnitude of the strains along n, and in
the plane orthogonal to n, see Fig.(1). We shall use
(2.1) to represent both swelling- and temperature-
induced distortions. A key feature of HNEs is that
they can be fabricated with a given, possibly non-
homogeneous, nematic orientation N; moreover,
the stretches λ‖, λ⊥ are sensible to solvent evap-
oration and temperature.

2.1 Swollen Nematic Gels

We consider a material whose state is described,
apart from a displacement field, by the pair (ϑ, v):
the first parameter ϑ = T/TN is the ratio between
the actual temperature T , and the transition tem-
perature TN ; the second one measures the volume
change occurring during deswelling.

Our specimen is prepared in the wet-nematic
state (ϑn, 1), with ϑn < 1 the preparation tem-
perature, and undergoes two phase transitions:
deswelling at constant temperature ϑn, until a
fully dry state with v = vd; heating at constant
deswollen ratio vd, until a temperature ϑ > 1, see
state diagram in Fig.(2). Given the four points in
the diagram

a = (1, 1) , b = (1, vd) , c = (ϑn, 1) , d = (ϑn, vd) ,

they can be connected with four maps: Di(v),
Dn(v) represent deswelling distortions (at constant
temperature), in the isotropic and in the nematic
state, respectively; Aw(ϑ), Ad(ϑ) represent the
cooling distortions (at constant deswelling) in the

1Not to be confused with the nematic order tensor. The
nematic tensor N is the proper kinematics descriptor as it
accounts only for the orientation of molecules, without dis-
criminating between +n and −n.

wet and in the dry state, respectively, see Fig. (2).
The four maps satisfy:

Di(1) = I , Dn(1) = I , Aw(1) = I , Ad(1) = I ;

moreover, deswelling is accompanied to volume
variation, while isotropic-nematic transition is vol-
ume preserving; thus: detDi(v) = detDn(v) = v,
detAw(ϑ) = detAd(ϑ) = 1.
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Figure 2: State diagram showing the phase transi-
tions we consider.

A distortion from point a to a generic state (ϑ, v)
is described by the map Fo

Fo(ϑ, v) = Ad(ϑ)Di(v) . (2.2)

In order to have the point c as reference, we con-
sider the map F̄o

F̄o(ϑ, v) = Fo(ϑ, v)Aw(ϑn)−1 . (2.3)

From

Aw(ϑn) = Dn(v)−1 Ad(ϑn)Di(v) , (2.4)

it follows that, to describe a path starting from c,
only Ad and Dn are needed:

F̄o(ϑ, v) = Ad(ϑ)Di(v) [Dn(v)−1 Ad(ϑn)Di(v)]−1

= Ad(ϑ)Ad(ϑn)−1 Dn(v) .
(2.5)

It is worth noting that equation (2.5) implies that

ϑ = ϑn , v = 1 ⇒ F̄o = I ,

ϑ = ϑn , v < 1 ⇒ F̄o = Dn(v) , (2.6)

ϑ = 1 , v < 1 ⇒ F̄o = Ad(ϑn)−1 Dn(v) .
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The distortions Dn(v) and Ad(ϑ) are uniaxial
stretches, sharing the same representation formula
(2.1); here, we shall denote with α(v) and λ(ϑ)
the swelling- and temperature-induced stretches,
respectively:

Dn(v) = α‖(v)N + α⊥(v) (I−N) ,

Ad(ϑ) = λ‖(ϑ)N + λ⊥(ϑ) (I−N) ,
(2.7)

where, as consequence of volume constraints:

α‖(v)α2
⊥(v) = v , λ‖(ϑ)λ2⊥(ϑ) = 1 . (2.8)

Moreover, given (2.7), F̄o(ϑ, v) admits a straight-
forward representation

F̄o(ϑ, v) =
λ‖(ϑ)α‖(v)

λ‖(ϑn)
N +

λ⊥(ϑ)α⊥(v)

λ⊥(ϑn)
(I−N) .

(2.9)
Let F denote a deformation with respect to the wet-
nematic state (point c), and let C = F>F be the
associated strain; the elastic deformation Fe and
the elastic strain Ce are given by

Fe = F F̄−1o , Ce = (Fe)>Fe = F̄−>o CF̄−1o ;
(2.10)

we consider a Neo-Hookean elastic energy density

φ = 1
2 µ (Ce · I− 3) = 1

2 µ (C ·C−1o − 3) ,

det(Co) = v2,
(2.11)

with µ the shear modulus, and Co the distortional
strain induced by F̄o:

Co(ϑ, v) = F̄>o (ϑ, v) F̄o(ϑ, v) . (2.12)

It follows from (2.11) that C = Co is a minimum;
we can easily verify that the wet-nematic state re-
alizes the reference configuration:

(ϑ, v) = (ϑn, 1) ⇒ F̄o = I ⇒ Co = I ⇒ C = I ;

moreover, to Co ∝ I there correspond a homoge-
nous state, that is, a flat configuration; thus, a
noteworthy consequence of (2.9) is that it can be
used to determine the temperature ϑf correspond-
ing to such a flat state. Being Co = F̄2

o, the condi-
tion Co ∝ I is equivalent to F̄o ∝ I; it follows that
ϑf satisfies

λ‖(ϑf )αd
‖

λ‖(ϑn)
=
λ⊥(ϑf )αd

⊥
λ⊥(ϑn)

. (2.13)

Actually, from experimental data [3], we know the
deswelling distortions at the completely dry state,
and the expressions relating the temperature to the
cooling distortions, that is, we know:

αd
‖ = α‖(vd) , αd

⊥ = α⊥(vd) ,

λ‖(ϑ) =

{
1 + β(1− ϑ)a , ϑ ∈ (ϑn, 1) ;

1 , ϑ ≥ 1 .
(2.14)

By using the relations between λ‖, λ⊥, equation
(2.13) may be solved explicitly for λf := λ‖(ϑf ):

λf = λ‖(ϑn)

(
αd
⊥
αd
‖

)2/3

, Fo(ϑf , vd) = v
1/3
d I .

(2.15)
Then, inverting the function ϑ 7→ λ‖(ϑ), we can
compute the flat temperature

ϑf = 1−
(
λf − 1

β

)1/a

. (2.16)

We note that the nematic orientation N does
not enter in the formula for the flat temperature;
nonetheless, it plays a key role for the stress state
realized in configurations different from the flat
ones.

3 Model implementation

We consider as reference configuration a paral-
lelepipedal body B of sides L×W ×H represent-
ing the HNE at the preparation state (wet-nematic;
point c in Fig.(2)). We denote with {o;x, y, z} a
Cartesian frame having its origin o at the center of
B, and the three axes aligned with L, W , and H,
respectively. We assume the nematic tensor N to
lie in the plane x, z, and having a linear variation
along z, with N parallel to z at z = −H/2, and
N parallel to x at z = H/2. The specimen is un-
loaded, clamped at the face x = −L/2 and free on
other faces.

We implement the balance equations of non-
linear elasticity in weak form, using the volumetric-
deviatoric decomposition of the deformation mea-
sures, and adopting a mixed method. Thus, we
have as independent variables the displacement
vector u, and the pressure p; given F = I+∇u, we
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consider the following relaxed strain energy density:
φr = φs + φv, with

φs = 1
2 µ (Cs ·C−1o − 3) isochoric energy;

φv = k
2 (J − v)2 volumetric energy;

Cs = (v/J)2/3 C , unimodular part of C;

p = −k (J − v) , pressure;

J = det(F) , volume change;
(3.17)

and k the bulk modulus. The reference and the
actual stress are then given by

S = 2Fe Ssc F̄
∗
o − pF∗,

T = S (F∗)−1
(3.18)

with A∗ = A−> denoting the cofactor of A, and

Ssc =
∂ψs

∂Ce
=

1

2
µJ−2/3e

(
I− 1

3
tr(Ce) (Ce)−1

)
,

(3.19)
where Je = det(Fe) = J/v. It follows

S = µ vFC−1o − pF∗ ;

T = µ
1

Je
Fe F

>
e − p I .

(3.20)

3.1 Balance equations

Balance equations are implemented using a mixed
L2-L1 method, that is using second- and first-order
Lagrangian shape functions for the displacement
and the pressure, respectively. The problem is then
stated follows: find a displacement u, and a pres-
sure p such that, for all test function ũ, and p̃ it
holds: ∫

B

(
− S · ∇ũ + f · ũ

)
= 0 ,∫

B

(
p

k
+ J − v) · p̃ = 0 ,

(3.21)

with u = 0 at x = −L/2. From (2.12), (3.20)
it follows that the reference stress is a function of
the independent variables u and p, and of the state
variables (ϑ, v):

S = S(u, p;ϑ, v) . (3.22)

Figure 3: Results from numerical experiments.
From top to bottom: dry state at preparation tem-
perature ϑn; nearly flat state at ϑ ∼ ϑf ; isotropic
state at ϑ = 1. Wireframe renders the preparation
state; five cross sections highlight bending.

Thus, we can solve (3.21) for u and p, using the pair
(ϑ, v) as parameters; in particular, using the para-
metric solver, we first simulate deswelling, by solv-
ing a sequence of N elastic problems corresponding
to (ϑn, vi), with v1 = 1, vN = vd < 1. The final
solution we obtain corresponds to the dry-nematic
state, and it is used as initial data to simulate the
heating process; thus, we solve another sequence
of N elastic problems for (ϑi, vd), with ϑ1 = ϑn,
ϑN = 1.
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Figure 4: Curvature versus temperature. The plot
shows the results from numerical (solid line) and
actual (dotted line with marker) experiments for
two similar specimens having different thickness
and length (H = 108 ∼ 46µm).

4 Results

We simulated the behavior of different paral-
lelepipedal specimens under deswelling and heat-
ing, with the goal of reproducing actual experi-
ments. Fig.(3) shows three snapshots from numer-
ical experiments: the wireframe renders the prepa-
ration state of the specimen undergoing a very large
bending during deswelling (top) and a counter-
bending during heating (top). Fig.(4) shows cur-
vature versus temperature for two same specimens
differing in height H and L: numerical results
(solid line) is benchmarked against experimental
data (dotted line with “o” and “+” markers) as
published in [3]. As expected, curvature is very
sensitive to thickness H, whose values are reported
in the figure, and is not to length L or width W .
Values of parameters used in our simulations are
given in table 1.

5. Conclusion

The outcome from the numerical implementation of
the present problem is twofold: at first, we assess
the effectiveness of the underlying physical model
and we tune the material parameters which are dif-

Table 1: Parameter list

Symbol Value Description

L 2000 ∼ 1400µm length

W 500µm width

H 108 ∼ 46µm thickness (wet)

vd 0.45 wet/dry vol. ratio

αd
‖ 0.82 α‖ at vd

αd
⊥ 0.74 α⊥ at vd

a 0.5 parameter for (2.14)

β 0.68 parameter for (2.14)

TN 363 K transition temp.

To 313 K preparation temp.

ficult to measure; then, we can predict distortion-
induced shape formation in specimen with non triv-
ial initial configuration.

Results from numerical and actual experiments
agree very well, as Fig.(4) shows; thus, we are con-
fident that our numerical simulation could be useful
in designing micro actuator based on HNEs prior
to their actual production.
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