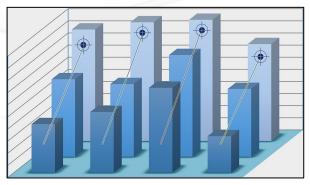

Predictive Analytics and Uncertainty Quantification of a Microscale Porous Reactor Simulation

Gavin Jones Sr. Application Engineer SmartUQ, Madison WI gavin.jones@smartuq.com

SMARTUQ®

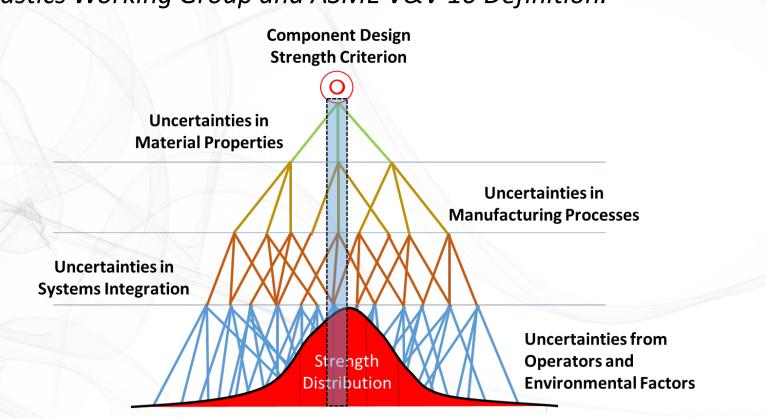
- Who we are: A Predictive Analytics and Uncertainty Quantification company based in Madison, WI.
- Our Mission: To deliver innovative software solutions that solve difficult problems in engineering and industrial applications.
- Our Customers: Engineering, testing, and analysis groups within industry and government.

What is Predictive Analytics?


Predictive Analytics encompasses a set of statistical tools used to analyze and extract information from data for the purpose of developing predictive models^[1].

https://pixabay.com/en/photos/analytics/

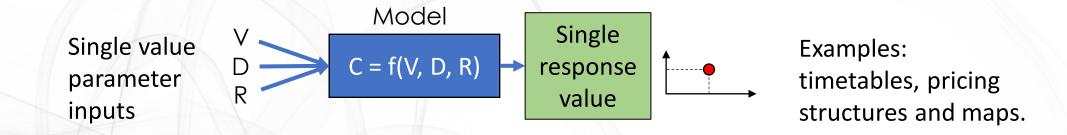
https://pixabay.com/en/analytics-information-innovation-3088958/

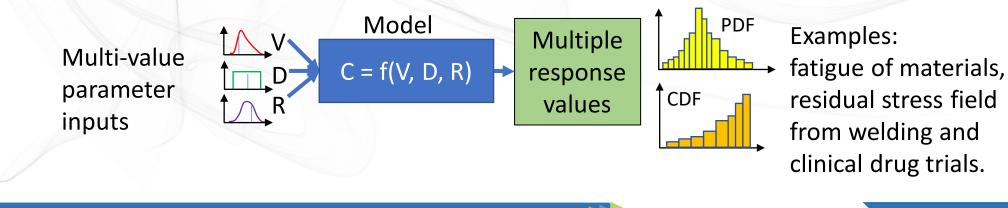

SMARTUQ

https://pixabay.com/en/chart-graph-analytic-analytics-3321166/

[1] https://en.wikipedia.org/wiki/Predictive_analytics

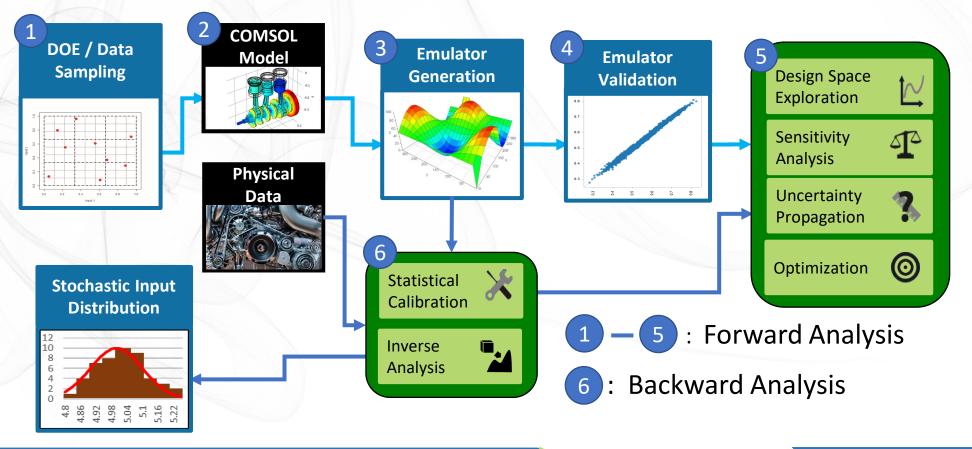
What is Uncertainty Quantification (UQ)?


Formulation of a statistical model to characterize imperfect and/or unknown information in engineering simulation and physical testing for predictions and decision making. – NAFEMS Stochastics Working Group and ASME V&V 10 Definition.


Objective: How likely are certain outcomes if some aspects of the complex system are not exactly known? SMART**UQ**[®]

Deterministic Vs. Probabilistic Analysis

A **Deterministic** analysis assumes certainty in all aspects. It is meant to yield a single solution describing the outcome of some "experiment" given appropriate inputs.

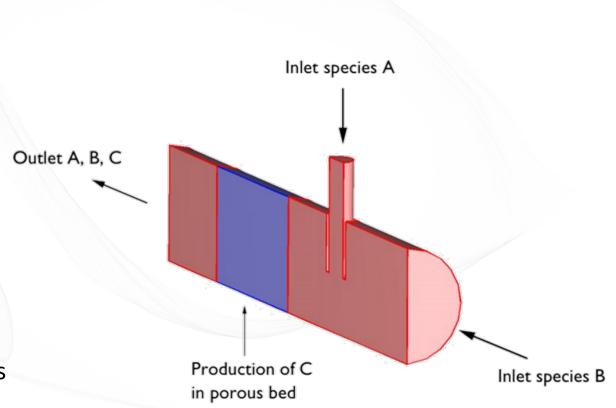


A **Probabilistic** analysis is meant to give a distribution of possible outcomes. It describes all outcomes and gives some measure of how likely each is to occur.

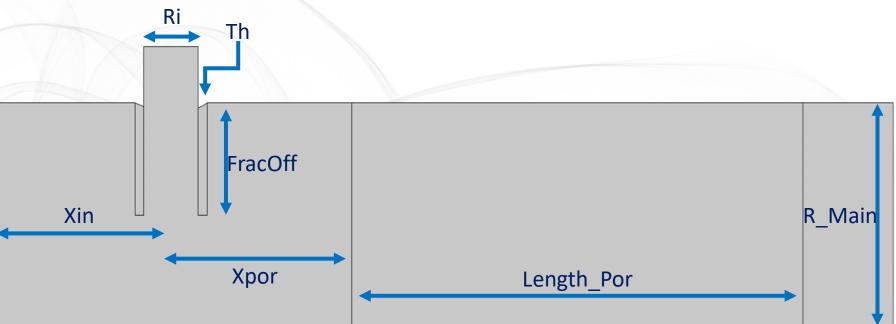
Predictive Analytics & UQ Workflow Using SmartUQ Coupled to COMSOL

- Design of Experiments/Data Sampling Methods to minimize the number of simulations or tests needed; parse existing large data sets into manageable batches.
- 2. Predictive Model Generation Build a predictive statistical model (a.k.a emulator or surrogate model) of the physics-based system for efficient design exploration and analysis.
- 3. Analytics Tools to extract valuable information about the system that can be used to reduce technical risk.

Microscale Porous Reactor Case Study Introduction


- A microscale porous reactor is used to catalyze a reaction that produces species C.
- The steady-state reacting flow is simulated using COMSOL Multiphysics
- 20 total input parameters

Output Parameters:


- Outlet velocity
- Exit concentrations of A, B, and C
- Pressure difference across the reactor

Goals:

- Determine the parameter values that produce species
 C at a concentration of 2.0 mol/m³ at the outlet
- Determine the probability that the reactor will produce species C at a concentration between 1.8 mol/m³ and 2.2 mol/m³

8 Geometric Parameters

	Variable Name	Description	Lower Bounds	Upper Bounds
	R_Main	Radius of reactor	0.8 [mm]	1.2 [mm]
	Ri	Inner radius of injection needle	0.175 [mm]	0.275 [mm]
	Th	Annular thickness of injection needle	.05[mm]	0.1[mm]
	Xin	Distance from the inlet to the injection site	0.75[mm]	2.0 [mm]
	Xpor	Distance from the injection site to the reaction bed	.75 [mm]	2.0 [mm]
Xout Dista		Distance from the end of the reaction bed to the outlet	.25 [mm]	2.0 [mm]
	Length_por	Length of the porous reaction bed	1.0 [mm]	3.0 [mm]
	FracOff	Radial distance of the injection site	0.4 [-]	0.6 [-]

SMART**UQ**[®]

Xout

Physics-based Parameters

Variable Name	Description	Lower Bounds	Upper Bounds
U0_A	Inlet velocity of species A	7.5 [cm/s]	12.5 [cm/s]
U0_B	Inlet velocity of species B	0.5 [cm/s]	1 [cm/s]
CA_0	Inlet concentration of species A	7.5 [mol/m^3]	15.0 [mol/m3]
CB_0	Inlet concentration of species B	2.5 [mol/m3]	5 [mol/m3]
T_iso	Temperature	290 [K]	310 [K]
A_f	Frequency factor	9.8e5 [m³/(mol·s)]	1.2e6 [m³/(mol·s)]
E	Activation energy	28,000 [J]	32,000 [J]
DA	Dissipation rate of species A in catalyst bed	9.5e-7 [m²/s]	1.5e6 [m²/s]
DB	Dissipation rate of species B in catalyst bed	9.5e-7 [m²/s]	1.5e6 [m²/s]
DC	Dissipation rate of species C in catalyst bed	9.5e-7 [m²/s]	1.5e6 [m²/s]
ЕрР	Porosity of catalyst bed	0.25 [-]	0.35 [-]
Карра	Permeability of catalyst bed	9.5e10 [m²]	1.5e10 [m²]

Optimization

<u>Goal</u>

• For a reactor with R_Main of 1 mm and T_iso of 300 K

- Achieve outlet concentration for species C of 2.0 mol/m³
- Minimize outlet concentrations for species A and B.

Constraints

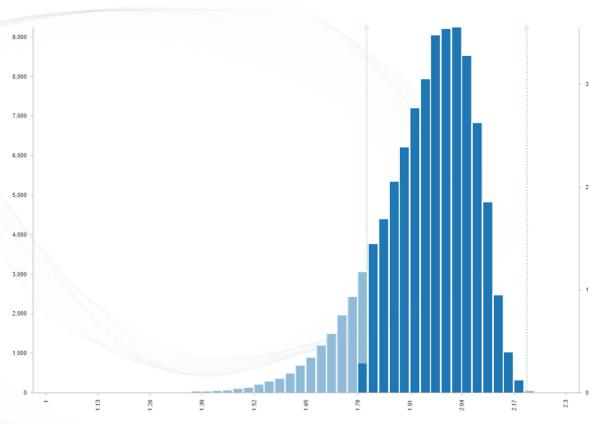
- X_in > 1 mm
- X_out > 1 mm
- Underlying reaction physics parameters are fixed

Fixed Parameters				
Variable	Value			
R_Main	1 [mm]			
T_iso	300 [K]			
A_f	1,090,000 [m ³ /(mol*s)]			
Е	30,000 [J/mol]			
DA	1.225e-6 [mol ² /s]			
DB	1.225e-6 [mol ² /s]			
DC	1.225e-6 [mol ² /s]			
EpP	0.3 [-]			
Карра	1.22e-9[m ²]			

Optimization Results

Optimized Parameters			
Variable	Value		
Length_por	2.4538 [mm]		
Xin	1.8937 [mm]		
Xpor	1.9263 [mm]		
Xout	1.6607 [mm]		
Ri	0.1930 [mm]		
Th	0.0746 [mm]		
FracOff	0.4323 [-]		
U0_A	9.2514[cm/s]		
U0_B	0.6994 [cm/s]		
C0_A	9.7987 [mol/m ³]		
CO_B	3.3418 [mol/m ³]		

Optimized Outputs		
Output	Value	
V _{out}	0.1070 [cm/s]	
C _A	1.1851 [mol/m ³]	
C _B	0.2476 [mol/m ³]	
Cc	2.0002 [mol/m ³]	
Δ_{P}	0.4316 [Pa]	


Uncertainty Propagation

<u>Goal</u>

- Determine the probability under uncertainty that the optimized reactor will produce species C at a concentration between 1.8 and 2.2 mol/m³
- Uncertainty in optimized parameters normally distributed around optimum values
- Uncertainty in fixed parameters normally distributed around fixed values.

Results

- 100,000 points drawn from input uncertainty distributions and propagated using the emulator
- 87% chance concentration of C is between 1.8 and 2.2 mol/m³

Output uncertainty distribution for concentration of C has mean of 1.95 mol/m³ and standard deviation of 0.125 mol/m³

For More Information on SmartUQ or Predictive Analytics...

COMSOL Conference Sponsor Presentation

 Coupling SmartUQ's Predictive Analytics and Uncertainty Quantification Solutions with COMSOL

SMARTUQ

- Download SmartUQ white papers from our website: http://www.smartuq.com/resources/whitepaper/
 - Statistical Calibration: Grounding Simulations in Reality
 - Introduction to SmartUQ Analytics and Digital Twins
- On Demand Webinars:

http:// smartuq.com/resources/webinars

- Introduction to Uncertainty Quantification for Engineers
- Introduction to Predictive Analytics for Engineers