Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using Spacers in MD Channels

A.M. Alklaibi
Technical college, Jeddah, Saudi Arabia

A membrane distillation process equipped with mesh-type material spacers has been modeled as a two-dimensional conjugate problem in which a simultaneous numerical solution of the momentum and energy of the feed and cold solutions have been carried out. The results shows that the center suspended spacer produces the highest average shear stress, and gives the highest spacer efficiency at all ...

Influence of Geometry on Mixing in a Passive Micromixer

E. Giuri, A. Ricci, and C. Ricciardi
Laboratorio di Technologie Elettrobiochimiche Miniaturizzate per l'Anilisi e la Ricerca, Politechnico di Torino

Finite Element Method simulations of microstructure behaviour is carried out by COMSOL. This enables us to make also technological considerations related to the easy way of fabrication and to lower production costs as explained in the following slide.

Uniformity Correction for Fluid Coating Head

W. Vetterling
ZINK Imaging, Bedford, MA, USA

Slot coating is a widely used commercial process for applying one or more thin layers to a substrate such as paper, fabric, film or other material. In many cases, a highly uniform thickness is required, where a coating head that has been corrected for use with a Newtonian fluid may not produce a uniform coating when used with non-Newtonian fluids. With a multiphysics calculation involving the ...

COMSOL Grab Bag: How to Use a Versatile CFD Code to Model Interesting Problems from Cryogenic Storage to Biofuel Production

Emily Nelson
Senior Research Engineer,
NASA Glenn Research Center, Cleveland, OH, USA

Emily Nelson received her PhD in Mechanical Engineering from the University of California at Berkeley. She is a senior research engineer at NASA Glenn Research Center and specializes in the formulation and solution of problems in microgravity science, multiphase flow, porous media, risk analysis, and gravitational biology. This leads her to fundamental and applied approaches on a range of issues ...

Impact of Velocity and Interfacial Tension on the Performance of Horizontal Wells in Gas Condensate Reservoirs

P. Ghahri, M. Jamiolahmady, and M. Sohrabi
Heriot Watt University, Edinburgh, United Kingdom

Drilling horizontal wells (HWs) has recently received renewed attentions with the increasing trend in exploitation of tight gas reservoirs. An accurate estimation of productivity of such systems using a numerical simulator is a challenging task, because its 3D simulation requires a fine grid exercise to capture the abrupt variation of fluid and flow parameters around the wellbore. This is ...

Transport Phenomena of Bubbles in a High Viscous Fluid

F. Pigeonneau
CNRS/Saint-Gobain, France

Dr. Franck Pigeonneau is currently working in the joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the company Saint-Gobain. He received his Ph. D. in 1998 from the University Pierre et Marie Curie (Paris, France). His main research activities are devoted to the transport phenomena in high viscous fluids relevant for glass melting processes. He is using COMSOL ...

Numerical Simulation of Oil Recovery by Polymer Injection using COMSOL

J. Wegner[1], L. Ganzer[1]
[1]Clausthal University of Technology, Clausthal, Germany

In this paper we used COMSOL Multiphysics to model basic physico-chemical effects relevant in polymer enhanced oil recovery (EOR) such as non-Newtonian rheology of the displacing phase, permeability reduction, adsorption and salinity effects. COMSOL\'s PDE interface as well as Species Transport in Porous Media interface was used for solving the underlying equations. The validity of the ...

Modeling Pit Lake Flooding After Mine Closure

S. Jordana[1], A. Nardi[1]
[1]Amphos 21, Barcelona, Spain

Most of mining works, either on the surface or in the underground, demand continuous groundwater pumping in order to operate under dry conditions. When the mining activity stops, dewatering also stops and mining facilities begin to flood, quite quickly at the beginning but becoming slower as the water level in the pit lake rises. The rise of the surface of the lake decelerates due to the bigger ...

Momentum Source Modeling of Mixing in the Lower Transitional Regime in a Stirred Tank

Grosz, R.
The Gillette Company

The ability of an industrial mixing tank to homogenize its contents decays rapidly as the Reynolds number is decreased in the transitional regime and approaches the laminar regime. A model of a mixing tank was developed using FEMLAB and using a CFD technique known as momentum source modelling. The model predictions of velocity components agree well with LDA measurements. Decolorization ...

Simulation of the Convective Heat Transfer and Working Temperature Field of a Photovoltaic Module Using COMSOL Multiphysics®

E. Ruiz-Reina[1] and M. Sidrach-de-Cardona[1]
[1]Departamento de Física Aplicada II, Universidad de Málaga, Málaga, Spain

The aim of this work is the Finite Element Analysis (FEA), by  using COMSOL Multiphysics®, of the convective heat transfer and working temperature field of a photovoltaic module under different wind conditions.

Quick Search