See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

Computational Fluid Dynamicsx

Thermohydraulic Study of a Fixed Bed for the Core of a Nuclear Reactor

J. C. Almachi [1], J. A. Montenegro [1],
[1] Departamento de Formación Básica, Escuela Politécnica Nacional, Quito, Pichincha, Ecuador

The fixed beds have the advantage of large heat transfer area, for they are used in some designs of innovative nuclear reactors as the reactor FBNR. Inside of study of fixed beds is important to define the following parameters: flow minimum and velocity profile of cooling fluid, ... Read More

Numerical Simulation of Electrokinetic Convection-Enhanced Delivery of Macromolecules

Y. Ou [1], A. Jaquins-Gerstl [1], S. G. Weber [1],
[1] Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA

The brain is a heterogeneous porous medium with regions of anisotropy. Measurements of tortuosity (λ) showed that diffusion in gray matter (e.g. striatum) is isotropic (λ = 1.65), whereas it is anisotropic in white matter (e.g. corpus callosum) (λparallel = 1.38, λperpendicular = 1.80) ... Read More

Aerodynamic Analysis of a Ski Jumper: a CFD Approach

R. Latchman [1], A. Pooransingh [1],
[1] The University of the West Indies, St. Augustine, Trinidad and Tobago

At the 2006 Winter Olympics, the jump length difference between first and second place was only 5cm. This illustrates why ski jumpers are constantly tinkering with their posture in order to gain even the smallest of advantages. Experiments such as those shown in Figures 1 and 2 (b), ... Read More

Simulation of Interstitial Nanoparticle Flow for Development of Tumor-On-A-Chip Device

J. Park [1], M. P. Vidal-Meza [1], R. Zhou [1], S. Barua [1], C. Wang [1],
[1] Missouri University of Science & Technology, Rolla, MO, USA

A simulation was performed to investigate the flow behaviors of drug delivery nanoparticles in a tumor-on-a-chip microfluidic device, which mimics a tumor cell having endothelial cells with micro-sized gaps. The Navier-Stokes equation and the convection-diffusion equation were used to ... Read More

Development of a Microfluidic-Based Electrochemical Cell for Analyzing Bacterial Biofilms

I. Claydon [1], J. Turner [1], B. Sammakia [1],
[1] Binghamton University, Binghamton, NY, USA

The ubiquitous nature of biofilms has led to a growing need to be able to detect, control, and maintain or remove them. Therefore a robust testing platform that allows for multiple analytical techniques is required to better understand their multitude of properties. The development of ... Read More

Simulating Hydraulic Fracturing and Contaminant Transport with MATLAB® and COMSOL Multiphysics® Software

D. W. Pepper [1], E. Nabizadeh [1], J. Waters [2],
[1] University of Nevada Las Vegas, Las Vegas, NV, USA
[2] Los Alamos National Laboratory, Los Alamos, NM, USA

Hydraulic fracturing, or fracking, is a technique used to extract oil and gas in shale rock. A mixture of water, sand, and chemicals are pumped into the well at high pressures to keep the fissures open, which allows the gas to flow. Although intermediate casings are inserted into the ... Read More

Development of an Oxygen-Conserving Mask for Pediatric Patients in Low-Resource Settings

D. Gasperino [1]
[1] Intellectual Ventures Laboratory, Bellevue, WA, USA

Worldwide, the leading cause of mortality in children is acute respiratory infection, primarily associated with pneumonia. One of the essential tools used to treat life-threatening hypoxemia due to pneumonia is the appropriate use of supplemental oxygen. While oxygen therapy is ... Read More

Uniform Reaction Rates and Optimal Porosity Design for Hydrogen Fuel Cells

J. H. Al-Smail [1]
[1] King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

We develop a porosity-optimization problem to improve the electrochemical reactions taking place in hydrogen fuel cells. We introduce a mathematical model, which involves a system of conservation laws defined in a porous space domain. Our goal is to find the domain's optimal porosity ... Read More

Multiphysics Analysis of a Photobioreactor

L. T. Gritter [1], E. Dunlop [2], J. S. Crompton [1], K. C. Koppenhoefer [1]
[1] AltaSim Technologies, Columbus, OH, USA
[2] Pan Pacific Technologies Pty Ltd, Adelaide, South Australia, Australia

Photo-bioreactors generate biomass by providing a controlled environment for the cultivation of algae due to photosynthesis. Algae cultivation can be controlled through the operating parameters and bioreactor environment to allow for high productivity and the use of systems with large ... Read More

Influence of Non-Newtonian Blood Viscosity on Wall Pressure in Right Coronary Arteries with Serial Stenoses

B. Liu [1]
[1] Monmouth University, West Long Branch, NJ, USA

Three dimensional mathematical models are developed to simulate the blood flows in patient specific right coronary arteries with two stenoses. Simulations are carried out with various flow parameters under physiological conditions. Both Newtonian and non-Newtonian blood viscosity models ... Read More