Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Investigation Of Bone Marrow Stem Cells In The Bone Marrow Niche In An In Vitro System

P. Lezuo, M. Stoddart, and M. Alini
AO Research Institute, Davos, Grison, Switzerland

We aim to develop an in vitro culture system to mimic the human bone marrow stem cell niche in an artificial perfusion bioreactor environment to culture human adult stem cells. State of the art human bone marrow stem cell research shows that even smallest changes in the physical, thermo dynamical or biochemical environment induce a differentiation of human bone marrow stem cells into other cell ...

COMSOL Assistance for the Modeling of Cellular Microsystems

J. Berthier
CEA-LETI-Minatec
Grenoble, France

The developments of microsystems for biotechnology have been fast in the last few years, and no sign of slowing down is observed. It has begun with lab-on-chip for genomics, especially for the recognition of DNA sequences, followed by protein reactors and immunoassays, and today the emphasis is on cellomics. Cell-chips are design to monitor the behavior of cells, individually or as a group, ...

Modeling Arterial Drug Transport From Drug-eluting Stents: Effect of Blood Flow on the Concentration Distribution Close to the Endothelial Surface

F. Bozsak, J.-M. Chomaz, and A. I. Barakat
LadHyX, Ecole Polytechnique
Palaiseau, France

Drug-eluting stents (DES) are commonly used for treating coronary atherosclerosis. Despite the broad effectiveness of DES, ~5% of treated patients experience complications including in-stent restenosis and late-stent thrombosis. Furthermore, drugs used in DES not only inhibit proliferation of smooth muscle cells but also affect re-endothelialization. We have developed a computational model of ...

Modeling of Through-the-Snow Electric Field Propagation for Rescue Systems

N. Ayuso[1], V. Bataller[1], A. Muñoz[2], D. Tardioli[1], J. A. Cuchí[1], F. Lera[3], and J. L. Villarroel[1]
[1]Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
[2]Advanced Research Laboratories of I3A, Walqa Technological park, Huesca, Spain
[3]Institute of Material Science of Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain

Propagation models for avalanche rescue systems are studied here. The paper focuses on the through-the-snow electric field propagation at ISM frequencies, comparing several models (air model, snow model, three-layered model) and using different solving method (geometrical optics, numerical solution in Matlab and FEM with COMSOL). The simulation results are fitted to experimental data, finding ...

Coupling Hydrodynamics and Geophysics with COMSOL Multiphysics: First Approach and Application to Leachate Injection in Municipal Waste Landfills

C. Duquennoi[1], S. Weisse[1], R. Clement[1], and L. Oxarango[2]
[1]Cemagref, HBAN research unit, Antony, France
[2]LTHE, Grenoble, France

The efficiency of bioreactor lanfills depends on a homogeneous distribution of leachate in the waste body. Therefore, optimisation of leachate injection systems is a challenging issue for operators. Most studies have shown that surface Electrical Resistivity Tomography (ERT) can be a suitable method to study moisture distribution (2D and 3D). But resistivity inversion models used to date are ...

Investigations on Hydrodynamic in Stirred Vessels for Educational Purposes

A. Egedy, T. Varga, and T. Chován
University of Pannonia
Department of Process Engineering
Veszprém, Hungary

With detailed hydrodynamic modelling of a system the critical parameters and operation limits can be determined. In the field of fluid dynamic and reactor engineering one of the most important aspects is the practical knowledge of future engineers and technicians. In our research several different reactor constructions and impeller configurations were modelled to achieve a better ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

Simulating Frequency Nonlinearities in Quartz Resonators at High Temperature and Pressure

A. Beerwinkle[1], R. Singh[1], and G. Kirikera[2]
[1]Mechanics of Advanced Materials Laboratory, School of Mechanical and Aerospace Engineering, Oklahoma State University, Tulsa, OK
[2]Geophysical Research Company, LLC, (GRC) Tulsa, OK

A three-dimensional finite element model, based on the linear field equations for superimposed small vibrations onto nonlinear thermoelastic stressed media given by Lee and Yong, was developed. This method involves solving the thermal stress and piezoelectric model with geometric and material nonlinearities. The thickness-shear mode frequency response of the model was benchmarked to ...

HIIPER Space Propulsion for Future Space Missions

G. H. Miley[1], M. P. Reilly[2], B. Ulmen[3], P. Keutelian[3], and J. Orcutt[3]
[1]NPL Associates, Inc., Urbana-Champaign, IL
[2]Starfire Industries, Champaign, IL
[3]University of Illinois, Urbana-Champaign, IL

A coupled helicon/IEC plasma jet is in development for space propulsion applications. This device decouples the ionization and plasma acceleration process into separate stages. A realistic model is to consider a plasma media where the relative permittivity is negative or imaginary. Toward this end, COMSOL readily considers complex permittivity values, enabling a first attempt at modeling a ...

High Field Magnetic Diffusion into Nonlinear Ferrimagnetic Materials

J-W. Braxton Bragg[1], J. Dickens[1], A. Neuber[1], and K. Long[2]
[1]Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, TX
[2]Dept. of Mathematics, Texas Tech University, Lubbock, TX

Ferrimagnetic based, coaxial nonlinear transmission lines (NLTLs) provide a means to generate sub-nanosecond risetime pulses (from nano-second input pulses) or megawatt level high power microwave oscillations, depending on the geometry, material, and external bias fields. This investigation uses the commercially available, finite element solver COMSOL to provide insight into pulse behavior. ...

Quick Search

2741 - 2750 of 3230 First | < Previous | Next > | Last