Modeling Electrochemical Processes in a Solid-State Lithium-Ion Battery

Bridget Cunningham December 7, 2016

Traditional lithium-ion batteries use an electrolyte based on a flammable liquid solvent, which can cause them to catch fire if they overheat. In recent years, nonflammable solid electrolytes have been investigated as an alternative to improve battery design and safety. Optimizing this technology for industrial applications, however, requires a better understanding of the electrochemical processes inside the device. Simulation serves as a valuable tool for this purpose, helping to realize the use of solid-state lithium-ion batteries in the near future.

Read More

Edmund Dickinson October 25, 2016

A short circuit in a battery is bad news: the chemical energy stored in the battery is lost as heat, rather than being used to power a device. Short circuits create intense heat, which can degrade battery materials or lead to fires or explosions due to thermal runaway. To avoid conditions that lead to short circuits in devices and ensure that short circuits do not cause unsafe operating conditions, we can study lithium-ion battery designs with the COMSOL Multiphysics® software.

Read More

Scott Smith August 24, 2016

Resistive and capacitive effects are fundamental to the understanding of electrochemical systems. The resistances and capacitances due to mass transfer can be represented through physical equations describing the corresponding fundamental phenomena, like diffusion. Further, when considering the resistive or capacitive behavior of double layers, thin films, and reaction kinetics, such effects can be treated simply through physical conditions relating electrochemical currents and voltages. Lastly, resistances and capacitances from external loading circuits can easily be represented in the COMSOL Multiphysics® software.

Read More

Guest Matteo Lualdi August 23, 2016

Today, guest blogger Matteo Lualdi of resolvent ApS, a COMSOL Certified Consultant, discusses the benefits of creating a simulation app to analyze a solid oxide fuel cell stack. For many businesses, numerical modeling and simulation are valuable tools at various stages of the design workflow, from product development to optimization. Apps further extend the reach of these tools, hiding complex multiphysics models beneath easy-to-use interfaces. Here’s a look at one such example: a solid oxide fuel cell stack app.

Read More

Ed Fontes April 13, 2016

The Newman model and its variants form the standard theory used to successfully predict the behavior of lithium-ion battery design under a range of operating conditions. In the Newman model, the geometry of the porous structure of the battery electrodes is not described in detail; instead, typical averaged dimensions are used as input to describe the electrodes as homogeneous and isotropic materials. But how accurate is this approach compared to a detailed, heterogeneous geometric model? Let’s find out.

Read More

Lexi Carver December 28, 2015

Corrosion is one of the most serious factors affecting the transportation industry. In an effort to minimize its impact, a German research institute and the manufacturers of Mercedes-Benz joined forces to investigate the corrosion occurring in automotive rivets and sheet metal. Using COMSOL Multiphysics simulation, they were able to study corrosion’s effects on car components.

Read More

Ed Fontes November 25, 2015

During the discharge of a battery, the current in the circuit flows from the positive to the negative electrode. According to Ohm’s law, this means that the current is proportional to the electric field, which says that current flows from a positive to negative electric potential. But what happens inside the battery? Does the current flow from negative to positive electric potential? This blog post explains the potential profile inside a battery during discharge and recharge.

Read More

Tommy Zavalis July 14, 2015

Batteries generally operate through numerous processes that depend on even more parameters. How can you find out more about what’s going on within them? One approach is to look at the cell’s electrical impedance. The Lithium-Ion Battery Impedance demo app, available in the Application Gallery, can be used to interpret the impedance of a specific lithium-ion battery design with minimal effort. It can also help parameterize the system, a useful step for setting up accurate time-dependent models in the future.

Read More

Edmund Dickinson April 22, 2015

You might think you’re a smooth driver — but your engine probably doesn’t. Everyday obstructions like traffic lights and changing speed limits mean that the power demands of a car drivetrain vary rapidly. Since we expect new technologies like hybrid or electric vehicles to match the performance of existing cars in responding instantly to the demands of our right foot, designers need to make sure that this is possible and safe. One part of this involves modeling batteries.

Read More

Ed Fontes February 5, 2015

Starting the car on a cold winter morning can be unpleasant if you have not been proactive the night before. When you are unable to start an engine, it is often the battery’s fault. Why is a battery more sensitive than other processes in a car? The answer lies in the battery’s ability to convert chemical energy into electrical energy, with a minimum of heat generation, and the relatively small amounts of thermal energy available at low temperatures.

Read More

Bridget Cunningham October 9, 2014

In the performance of lithium-ion batteries, thermal management is an important element to consider. Through modeling and simulation, you can improve the design process by analyzing how heat is transferred within the energy source.

Read More



1 2 3