Analyzing the Design of a New Generation of Midinfrared Fiber Optics

Bridget Cunningham April 17, 2017

Optical fibers that deliver midinfrared wavelengths are in high demand for a range of relative applications. As infrared transparent materials, semiconductors are useful for this purpose when combined with silica, helping to realize a new generation of midinfrared fiber optics. While important to performance, measuring the optical losses of such structures can be challenging experimentally because of time and costs. Simulation enables us to efficiently model this behavior for varying wavelengths and fiber geometries and identify strategies to reduce losses.

Read More

Caty Fairclough April 14, 2017

Current wireless power transfer technologies require charging stands or pads and only work over small distances, limiting their possible applications. But what if we can provide safe wireless power to electronic devices anywhere in a room, regardless of their location? The quasistatic cavity resonance (QSCR) method, developed by a team at Disney Research, may be the solution. Let’s explore the inner workings of this method as well as the simulation and experiments used to test its functionality and safety.

Read More

Bridget Cunningham April 12, 2017

Many parameters can impact the strength and stability of concrete structures, so finding ways to efficiently measure their condition is key. Embedding sensors within these structures can provide such assessments. To accurately model these systems, it’s important to account for the complex phenomena within concrete and analyze their impact on sensor performance. The flexibility of the COMSOL Multiphysics® software allowed one research team to do just that. Their findings offer insight into designing more reliable sensors for concrete monitoring.

Read More

Caty Fairclough April 11, 2017

Microwave filters can help prevent unwanted frequency components in the output of a microwave transmitter design. However, when the microwave system experiences thermal drift, it can be difficult to achieve high-frequency stability in the filters. To address this issue and improve filter designs, system engineers need to predict the change of the passband frequency caused by thermal expansion. As we’ll see today, one way to achieve this is with multiphysics modeling.

Read More

Walter Frei April 10, 2017

If you design electromagnetic coils, the combination of the AC/DC and Optimization modules with the COMSOL Multiphysics® software gives you the power to quickly come up with improved design iterations. Today, we will look at designing a coil system to achieve a desired magnetic field distribution by changing the coil’s driving currents. We will also introduce three different optimization objectives and constraints. This topic is of interest to anyone who is modeling coils or curious about optimization.

Read More

Bridget Cunningham April 6, 2017

Modeling the propagation of waves from a large vibrating structure can be a challenging task. It requires balancing the reduction of the computational domain’s size with the decrease of reflection at surface boundaries. With the low-reflecting boundary conditions in the COMSOL Multiphysics® software, we can easily reduce our computational domain to a practical size while ensuring accurate simulation results. Today, we illustrate this with the example of modeling wave propagation in rocks under blast loads.

Read More

Caty Fairclough April 5, 2017

When looking to mitigate air pollution, a major health concern in many highly populated cities, one option is to use plants and greenery. Before this method can be used, it’s important to confirm that this technique is a functional strategy for improving air quality and determine the best way of implementing it. To accomplish this, researchers created a model in the COMSOL Multiphysics® software to see how different types of greenery affect pollution reduction in urban canyons.

Read More

Walter Frei April 4, 2017

Have you ever wanted to query the results of your model within an arbitrary geometric subregion? You might think that this requires adding geometries to a model and recomputing the solution. Instead, in the COMSOL Multiphysics® software, we can just add and reposition a part solely for the purpose of evaluating the results. We will demonstrate this in the context of computing mutual inductance between coils and discuss simpler techniques that can be used for a reduced set of cases.

Read More

Caty Fairclough April 3, 2017

People living near waterways can avoid the damaging effects of flooding by building embankments, which can be made safer using bank protection structures. However, factors such as soil pressure, water level fluctuation, and groundwater seepage can cause bank protection structures to deform and eventually collapse. To better understand this issue, researchers modeled a bank protection structure located within the Yangtze River in China, enabling them to predict the structure’s displacement and deformation.

Read More

Caty Fairclough March 31, 2017

When designing multibody systems, interconnected flexible and rigid bodies must be analyzed to see how they are affected by large rotational and translational displacements. While we can achieve this with the Multibody Dynamics Module in the COMSOL Multiphysics® software, we first want to confirm the reliability of the simulation results. Here, we discuss a benchmark model of a four-bar mechanism that helps prove the validity of these multibody dynamics simulations.

Read More

Bridget Cunningham March 28, 2017

Measuring acceleration is important in high-speed dynamics, as velocity, force, and pressure are derived from it. Sensing elements inside accelerometers make it possible to obtain such measurements. As technology advances, these sensor packages must be optimized to handle higher vibrational frequency bandwidths. To accomplish this, researchers tested their novel piezoresistive sensor chip as part of a package design. Their simulation results, which agree well with experimental data, pave the way for optimizing sensor packages to achieve higher bandwidths.

Read More



1 26 27 28 29 30 123