Scatterer on Substrate

Introduction

A plane TE-polarized electromagnetic wave is incident on a gold nanoparticle on a dielectric substrate. The absorption and scattering cross sections of the particle are computed for a few different polar and azimuthal angles of incidence.

Model Definition

Figure 1 shows the geometry, with the substrate considered to occupy the entire $z<0$ halfspace. A plane electromagnetic wave, with a 500 nm wavelength, is incident at a polar angle θ and an azimuthal angle ϕ. The wave is plane-polarized with the electric field vector tangential to the surface of the substrate.

Figure 1: The modeled geometry. The gray boundary represents the surface of the dielectric. The electric field vector of the incident wave points in the ϕ direction, orthogonal to the plane of incidence.

The model uses $n_{a}=1$ for air and $n_{b}=1.5$ for the dielectric substrate. The scattering nanoparticle is made of gold. The refractive index is taken from the Optical Materials Database.

The model computes the scattering, absorption, and extinction cross-sections of the particle on the substrate. The scattering cross-section is defined as

$$
\sigma_{\mathrm{sc}}=\frac{1}{I_{0}} \iint\left(\mathbf{n} \cdot \mathbf{S}_{\mathrm{sc}}\right) d S
$$

Here, \mathbf{n} is the normal vector pointing outwards from the nanodot, \mathbf{S}_{sc} is the scattered intensity (Poynting) vector, and I_{0} is the incident intensity. The integral is taken over the closed surface of the scatterer. The absorption cross section equals

$$
\sigma_{\mathrm{abs}}=\frac{1}{I_{0}} \iiint Q d V
$$

where Q is the power loss density in the particle and the integral is taken over its volume. The extinction cross section is simply the sum of the two others:

$$
\sigma_{\mathrm{ext}}=\sigma_{\mathrm{sc}}+\sigma_{\mathrm{abs}}
$$

Results and Discussion

As explained in Notes About the COMSOL Implementation, the model first computes a background field from the plane wave incident on the substrate, and then uses that to arrive at the total field with the nanoparticle present.

Figure 2 and Figure 3 show the y-component and the norm of the electric background field, not yet affected by the nanoparticle, for the $\phi=\pi / 4, \theta=\pi / 6$ solution. In the air, this field is a superposition of the incident and reflected plane waves. In the substrate, only a transmitted plane wave exists.
theta $=0.5236$, phi $=0.7854$ lambda $0(1)=0.5 \mu \mathrm{~m}$ Slice: Electric field, y component $(\mathrm{V} / \mathrm{m})$

Figure 2: Background electric field, y-component for $\phi=\pi / 4, \theta=\pi / 6$, on three slices parallel with the yz-plane.
theta $=0.5236$, phi $=0.7854$ lambda $0(1)=0.5 \mu \mathrm{~m}$ Slice: Electric field norm (V / m)

Figure 3: Background electric field norm, for $\phi=\pi / 4, \theta=\pi / 6$.

Figure 4 and Figure 5 show the norm of the total electric field for the same angles of incidence, after it has been influenced both by the material interface and by the nanoparticle.
theta $=0.5236$, phi $=0.7854$ lambdaO $(1)=0.5 \mu \mathrm{~m}$ Slice: Electric field, y component $(\mathrm{V} / \mathrm{m})$

Figure 4: Slice plot of the y-component of the total electric field for $\phi=\pi / 4, \theta=\pi / 6$.
theta $=0.5236$, phi $=0.7854$ lambdaO(1) $=0.5 \mu \mathrm{~m}$ Slice: Electric field norm $(\mathrm{V} / \mathrm{m})$

Figure 5: Slice plot of the total electric field norm for $\phi=\pi / 4, \theta=\pi / 6$.

In Figure 6, the power loss density is shown in a horizontal slice through the nanoparticle. No apparent resonance is present and most of the losses take place near the surface of the particle.

Figure 6: Power loss density in a slice through the nanoparticle.
Table 1 shows the computed cross sections for the set of angles of incidence.
TABLE I: CROSS SECTIONS.

θ	ϕ	$\sigma_{\mathrm{abs}}\left(\mathrm{m}^{2}\right)$	$\sigma_{\mathrm{ext}}\left(\mathrm{m}^{2}\right)$
0	0	$9.45 \cdot 10^{-14}$	$2.28 \cdot 10^{-13}$
$\pi / 6$	0	$8.10 \cdot 10^{-14}$	$1.95 \cdot 10^{-13}$
$\pi / 6$	$\pi / 4$	$8.14 \cdot 10^{-14}$	$1.97 \cdot 10^{-13}$
$\pi / 4$	$\pi / 4$	$6.67 \cdot 10^{-14}$	$1.58 \cdot 10^{-13}$

For this small sample of the angular space, both cross sections indicate a strong dependence on the polar angle but little variation with the azimuthal angle. For a comparison, the nanoparticle covers a geometric area of $1.59 \cdot 10^{-13} \mathrm{~m}^{2}$ of the substrate.

The Electromagnetic Waves, Frequency Domain interface features an option to solve for the scattered field, a perturbation to the total field caused by a local scatterer. The incident wave is then entered as a background electric field. This field should be a solution to the wave equation without the presence of the scatterer.

If the scatterer is suspended in free space or any other homogeneous medium, the background field is simply what you are sending in, for example a Gaussian or a plane wave. With the scatterer placed on a substrate, the analytical expression for the background field becomes more complicated. It needs to be the correct superposition of an incident and a reflected wave in the free space domain, and a transmitted wave in the substrate.

A simple and general way to avoid deriving and entering the analytical background field is to use a full field solution of the problem without the scatterer. To achieve this full field solution, the simulation is set up with two Port conditions. One defines the incident plane wave and allows for specular reflection. The other absorbs the transmitted plane wave. The side boundaries have Floquet conditions, stating that the solution on one side of the geometry equals the solution on the other side multiplied by a complex-valued phase factor. This effectively turns the model into a section of a geometry that extends indefinitely in the $x y$-plane.

The propagation direction and the polarization of the incident electric field are input parameters for the periodic ports. Internally, this information is also used by the Floquet conditions. Using the coordinate system in Figure 1 , the incident wave vector is

$$
\mathbf{k}_{a}=\left(k_{x}, k_{y}, k_{a z}\right)=k_{a}\left(\cos \phi_{a} \sin \theta_{a}, \sin \phi_{a} \sin \theta_{a},-\cos \theta_{a}\right)
$$

where k_{a} is the wave number in the first medium, here vacuum, ϕ_{a} and θ_{a} the azimuthal and polar angles of incidence. The expression for the tangentially polarized electric field vector at the plane of incidence becomes

$$
\mathbf{E}_{0}=E_{0}\left(-\sin \phi_{a}, \cos \phi_{a}, 0\right) \exp \left(-i\left(k_{x} x+k_{y} y\right)\right)
$$

The Port condition lets you define a total input power from which the electric field amplitude E_{0} is derived. The model uses the value

$$
P=I_{0} A \cos \theta
$$

where $I_{0}=1 \mathrm{MW} / \mathrm{m}^{2}$ is the intensity of the incident field and A the area of the boundary where the port is set up.

In the substrate, the wave vector is

$$
\mathbf{k}_{b}=\left(k_{x}, k_{y}, k_{b z}\right)=k_{b}\left(\cos \phi_{b} \sin \theta_{b}, \sin \phi_{b} \sin \theta_{b},-\cos \theta_{b}\right)
$$

with

$$
\begin{gathered}
k_{b}=\frac{n_{b}}{n_{a}} k_{a} \\
\phi_{b}=\phi_{a} \\
\sin \theta_{b}=\frac{n_{a}}{n_{b}} \sin \theta_{a}
\end{gathered}
$$

Notice that the x and y components for the wave vector are the same for the wave in the substrate and the incident wave, due to field continuity.

The electric field vector at the output port is proportional to

$$
\left(-\sin \phi_{b}, \cos \phi_{b}, 0\right) \exp \left(-i\left(k_{x} x+k_{y} y\right)\right) .
$$

Thus, the mode fields and the mode field amplitudes are the same at the output port as at the input port.

Table 2 compares the results for the background field reflectance and the corresponding analytical value. For more information, see (Fresnel Equations).

TABLE 2: COMPUTED AND ANALYTICAL POWER REFLECTION COEFFICIENTS.

θ	ϕ	ewfd.Rport_1	R
0	0	0.0400	0.0400
$\pi / 6$	0	0.0576	0.0578
$\pi / 6$	$\pi / 4$	0.0576	0.0578
$\pi / 4$	$\pi / 4$	0.0937	0.0920

A second Electromagnetic Waves, Frequency Domain interface introduces the gold nanoparticle as the scatterer and surrounds the geometry with PMLs. With the full field solution from the first interface as the background field, only the scattered field needs to be absorbed in the PMLs.

Application Library path: Wave_Optics_Module/Optical_Scattering/ scatterer_on_substrate

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

I In the Model Wizard window, click 3D.
2 In the Select Physics tree, select Optics>Wave Optics>Electromagnetic Waves,
Frequency Domain (ewfd).
3 Click Add.
4 In the Select Physics tree, select Optics>Wave Optics>Electromagnetic Waves,
Frequency Domain (ewfd).
5 Click Add.
After clicking Add twice, you should now see two Electromagnetic Waves, Frequency Domain entries in the Added physics interfaces field.

6 Click Study.
7 In the Select Study tree, select Empty Study.
You will add steps to the study before solving the model.
8 Click Done.

GLOBAL DEFINITIONS

Define the model parameters. The Description field is optional.
I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.

3 In the table, enter the following settings:

Name	Expression	Value	Description
w	750 [nm]	7.5E-7 m	Width of physical geometry
t_pml	150 [mm]	$1.5 \mathrm{E}-7 \mathrm{~m}$	PML thickness
h_air	400 [nm]	4E-7 m	Air domain height
h_subs	250 [nm]	$2.5 \mathrm{E}-7 \mathrm{~m}$	Substrate domain height
na	1	I	Refractive index, air
nb	1.5	1.5	Refractive index, substrate
lda0	500 [mm]	5E-7 m	Wavelength
phi	0	0	Azimuthal angle of incidence in both media
theta	0	0	Polar angle of incidence in air
thetab	$\begin{aligned} & \operatorname{asin}\left(n a / n b^{*}\right. \\ & \sin (t h e t a)) \end{aligned}$	0 rad	Polar angle in substrate
IO	1 [MW/m^2]	$156 \mathrm{~W} / \mathrm{m}^{2}$	Intensity of incident field
P	IO* ${ }^{\wedge}{ }^{\wedge}{ }^{*} \cos ($ theta)	5.625E-7 W	Port power

The first four parameters will be used in defining the geometry. The azimuthal angle in the substrate remains the same as the angle of incidence. As the polar angle of incidence gets other values in the study, the polar angle in the substrate will automatically be recomputed.

GEOMETRY I

Import the nanoparticle.

Import I (impl)

I In the Home toolbar, click Import.
2 In the Settings window for Import, locate the Import section.

3 Click Browse.

4 Browse to the model's Application Libraries folder and double-click the file scatterer_on_substrate.mphbin.

5 Click Import.
Block I (blk I)
Draw the air and the substrate using your model parameters.
I In the Geometry toolbar, click Block.

2 In the Settings window for Block, locate the Size and Shape section.
3 In the Width text field, type w+2*t_pml.
4 In the Depth text field, type w+2*t_pml.
5 In the Height text field, type h_air+t_pml.
6 Locate the Position section. From the Base list, choose Center.
7 In the \mathbf{z} text field, type (h_air+t_pml)/2.
8 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	t_pml

9 Select the Left, Right, Front, Back, and Top check boxes.
10 Clear the Bottom check box.
Block 2 (blk2)
I Right-click Block I (blkI) and choose Duplicate.
2 In the Settings window for Block, locate the Size and Shape section.
3 In the Height text field, type h_subs+t_pml.
4 Locate the Position section. In the \mathbf{z} text field, type - (h_subs+t_pml)/2.
5 Make sure the Left, Right, Front, Back, and Bottom check boxes are selected. Leave the Top check box cleared.

6 Click Build All Objects.
7 Click the Zoom Extents button in the Graphics toolbar.

8 Click the Wireframe Rendering button in the Graphics toolbar.

DEFINITIONS

Define selections to separate between the part of your model where you will compute physical results and the part that will constitute the PML. For convenience, add separate selections for the nanoparticle.

Explicit I

I In the Definitions toolbar, click Explicit.
2 In the Settings window for Explicit, type Physical Domains in the Label text field.
3 Select Domains 18, 19, and 25 only.

Complement I

I In the Definitions toolbar, click Complement.
2 In the Settings window for Complement, type PML Domains in the Label text field.
3 Locate the Input Entities section. Under Selections to invert, click Add.
4 In the Add dialog box, select Physical Domains in the Selections to invert list.

5 Click OK.

Explicit 2

I In the Definitions toolbar, click Explicit.

2 In the Settings window for Explicit, type Nanoparticle in the Label text field.
3 Select Domain 25 only.

Explicit 3

I In the Definitions toolbar, click Explicit.
2 In the Settings window for Explicit, type Nanoparticle Surface in the Label text field.
3 Select Domain 25 only.
4 Locate the Output Entities section. From the Output entities list, choose Adjacent boundaries.

Perfectly Matched Layer I (pmll)
I In the Definitions toolbar, click Perfectly Matched Layer.
2 In the Settings window for Perfectly Matched Layer, locate the Domain Selection section.
3 From the Selection list, choose PML Domains.
4 Locate the Scaling section. From the Physics list, choose Electromagnetic Waves, Frequency Domain 2 (ewfd2).

Variables I

Only the second interface will be active in the PML domains. As this interface will use the electric field components from the first interface, define them to be 0 in the PML domains.

I In the Definitions toolbar, click Local Variables.
2 In the Settings window for Variables, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Domain.
4 From the Selection list, choose PML Domains.
5 Locate the Variables section. In the table, enter the following settings:

Name	Expression	Unit	Description
ewfd.Ex	0		
ewfd.Ey	0		
ewfd.Ez	0		

MATERIALS

Define materials for the air, the substrate, and the nanoparticle.
Material I (matl)
I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, type Air in the Label text field.
3 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit
Refractive index, real part	n _iso $; \mathrm{nii}=\mathrm{n}$ _iso, $\mathrm{nij}=0$	na	Property group

Material 2 (mat2)
I Right-click Materials and choose Blank Material.
2 In the Settings window for Material, type Substrate in the Label text field.
3 Select Domains $1,2,5,6,9,10,13,14,17,18,21,22,26,27,30,31,34$, and 35 only.
4 Locate the Material Contents section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Refractive index, real part	n _iso $;$ nii $=\mathrm{n}$ _iso, $\mathrm{nij}=0$	nb	I	Refractive index

ADD MATERIAL

I In the Home toolbar, click Add Material to open the Add Material window.
Add the material properties of gold from the Optical Materials Database.
2 Go to the Add Material window.
3 In the tree, select Optical>Inorganic Materials>Au - Gold>Models and simulations>
Au (Gold) (RakiÄá et al. 1998: Brendel-Bormann model; n,k 0.248-6.20 $\mu \mathrm{m}$).
4 Click Add to Component in the window toolbar.
5 In the Home toolbar, click Add Material to close the Add Material window.

MATERIALS

Au (Gold) (RakiÄá et al. 1998: Brendel-Bormann model; n,k 0.248-6.20 $\mu \mathrm{m}$) (mat3)
I In the Settings window for Material, locate the Geometric Entity Selection section.
2 From the Selection list, choose Nanoparticle.

ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN (EWFD)

You are now ready to specify the physics. Start by setting up the first interface so that it computes the full wave solution to the plane wave falling in on the semi-infinite substrate.

I In the Model Builder window, under Component I (compl) click Electromagnetic Waves, Frequency Domain (ewfd).

2 In the Settings window for Electromagnetic Waves, Frequency Domain, locate the Domain Selection section.

3 From the Selection list, choose Physical Domains.
4 Locate the Physics-Controlled Mesh section. Clear the Enable check box, as the mesh will be setup manually in some later steps.

Wave Equation, Electric 2

I In the Physics toolbar, click Domains and choose Wave Equation, Electric.
2 In the Settings window for Wave Equation, Electric, locate the Domain Selection section.
3 From the Selection list, choose Nanoparticle.
4 Locate the Electric Displacement Field section. From the n list, choose User defined. In the associated text field, type na.
5 From the k list, choose User defined. This redefines the nanoparticle as air.

DEFINITIONS

Define variables for the mode field amplitudes to the ports, as the expressions are entered twice (on both ports).

Variables 2

I In the Model Builder window, under Component I (compl) right-click Definitions and choose Variables.

2 In the Settings window for Variables, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundaries 62 and 68 only.
5 Locate the Variables section. In the table, enter the following settings:

Name	Expression	Unit	Description
E0x	$-\sin ($ phi $)$		
EOy	$\cos ($ phi $)$		

ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN (EWFD)

Port 1
I In the Physics toolbar, click Boundaries and choose Port.
2 Select Boundary 68 only.
For the first port, wave excitation is on by default.
3 In the Settings window for Port, locate the Port Properties section.

4 In the $P_{\text {in }}$ text field, type P.
5 From the Type of port list, choose Periodic, as the background field is an infinite planewave field.

Now use the variables, defined for the mode field amplitudes.
6 Locate the Port Mode Settings section. Specify the \mathbf{E}_{0} vector as

EOx	x
EOy	y
0	z

Finally, add the angles of incidence and the refractive index for the domain adjcacent to the port.

7 In the α_{1} text field, type theta.
8 In the α_{2} text field, type phi.
9 Locate the Automatic Diffraction Order Calculation section. In the n text field, type na.

Port 2

I In the Physics toolbar, click Boundaries and choose Port.
2 Select Boundary 62 only.
3 In the Settings window for Port, locate the Port Properties section.
4 From the Type of port list, choose Periodic.
Again, use the variables defined for the mode field amplitudes.
5 Locate the Port Mode Settings section. Specify the \mathbf{E}_{0} vector as

EOx	x
EOy	y
0	z

6 Locate the Automatic Diffraction Order Calculation section. In the n text field, type nb.

Periodic Condition I

I In the Physics toolbar, click Boundaries and choose Periodic Condition.
2 Select Boundaries $60,63,113$, and 116 only.
3 In the Settings window for Periodic Condition, locate the Periodicity Settings section.
4 From the Type of periodicity list, choose Floquet periodicity.
5 From the k-vector for Floquet periodicity list, choose From periodic port.

Periodic Condition 2

I In the Physics toolbar, click Boundaries and choose Periodic Condition.
2 Select Boundaries 61, 64, 74, and 77 only.
3 In the Settings window for Periodic Condition, locate the Periodicity Settings section.
4 From the Type of periodicity list, choose Floquet periodicity.
5 From the \mathbf{k}-vector for Floquet periodicity list, choose From periodic port.

ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN 2 (EWFD2)

Set up the second interface to compute how the plane wave solution from the first interface is affected by the nanoparticle.

I In the Model Builder window, under Component I (compl) click Electromagnetic Waves, Frequency Domain 2 (ewfd2).

2 In the Settings window for Electromagnetic Waves, Frequency Domain, locate the Settings section.

3 From the Formulation list, choose Scattered field.
4 Specify the \mathbf{E}_{b} vector as

ewfd.Ex	x
ewfd.Ey	y
ewfd.Ez	z

5 Locate the Physics-Controlled Mesh section. Clear the Enable check box, as the mesh will be setup manually in some later steps.

MESH I

Define a mesh with a maximum mesh element size of one sixth of the material wavelength. In the nanoparticle, the mesh should resolve the 43 nm skin depth. To avoid interpolation errors across the periodic boundaries, they should be meshed identically. PMLs should preferably use a swept mesh with at least six elements across.

Start by adding a Size node and a Free Tetrahedral node.

Size

I In the Model Builder window, under Component I (compl) right-click Mesh I and choose Free Tetrahedral.

2 In the Settings window for Size, locate the Element Size section.
3 Click the Custom button.

4 Locate the Element Size Parameters section. In the Maximum element size text field, type lda0/6, which will be the maximum mesh element size for the Air domain.

Now add a Size node for the nanoparticle.
Size I
I In the Model Builder window, right-click Mesh I and choose Size.
2 Right-click Size I and choose Move Up.
3 In the Settings window for Size, locate the Geometric Entity Selection section.
4 From the Geometric entity level list, choose Domain.
5 Select Domain 25 only.
6 Locate the Element Size section. Click the Custom button.
7 Locate the Element Size Parameters section. Select the Maximum element size check box.
8 In the associated text field, type $43[\mathrm{~nm}]$.
Create the Size node for the substrate domain by duplicating this size node.

Size 2

I Right-click Component I (compI)>Mesh I>Size I and choose Duplicate.
2 In the Settings window for Size, locate the Geometric Entity Selection section.
3 Click Clear Selection.
4 Select Domain 18 only.
5 Locate the Element Size Parameters section. In the Maximum element size text field, type lda0/6/nb.

Add a triangular mesh for two of the periodic boundary condition boundaries and then use Copy Mesh to make the mesh boundaries identical.

Free Triangular I

I In the Model Builder window, right-click Mesh I and choose More Operations> Free Triangular.

2 Select Boundaries 60, 61, 63, and 64 only.
Copy Face I
I Right-click Mesh I and choose More Operations>Copy Face.
2 Select Boundaries 60 and 63 only.
3 In the Settings window for Copy Face, locate the Destination Boundaries section.
4 Select the Active toggle button.
5 Select Boundaries 113 and 116 only.

Copy Face 2

I Right-click Component I (compI)>Mesh I>Copy Face I and choose Duplicate.
2 In the Settings window for Copy Face, locate the Source Boundaries section.
3 Click Clear Selection.
4 Select Boundaries 61 and 64 only.
5 Locate the Destination Boundaries section. Click Clear Selection.
6 Select Boundaries 74 and 77 only.

Free Tetrahedral I

Before creating the final swept mesh, define the domains for the free tetrahedral mesh.
I In the Model Builder window, under Component I (comp I)>Mesh I click Free Tetrahedral I.

2 In the Settings window for Free Tetrahedral, locate the Domain Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domains 18, 19, and 25 only.

Swept I

I In the Model Builder window, right-click Mesh I and choose Swept.
2 Right-click Swept I and choose Move Down.
Distribution I
I Right-click Component I (compl)>Mesh I>Swept I and choose Distribution.
2 In the Settings window for Distribution, locate the Distribution section.
3 In the Number of elements text field, type 8.

4 Click Build AII.

DEFINITIONS

Before solving the model, set up component couplings and variables for extracting the cross sections.

Integration I (intopl)

I In the Definitions toolbar, click Component Couplings and choose Integration.
2 In the Settings window for Integration, type intop_vol in the Operator name text field.
3 Locate the Source Selection section. From the Selection list, choose Nanoparticle.

Integration 2 (intop2)

I In the Definitions toolbar, click Component Couplings and choose Integration.
2 In the Settings window for Integration, type intop_surf in the Operator name text field.
3 Locate the Source Selection section. From the Geometric entity level list, choose Boundary.

4 From the Selection list, choose Nanoparticle Surface.

Variables 3

I In the Definitions toolbar, click Local Variables.
2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

Name	Expression	Unit	Description
nrelPoav	nx*ewfd2.relPoavx+ny* ewfd2.relPoavy+nz* ewfd2.relPoavz	$\mathrm{W} / \mathrm{m}^{2}$	Relative normal Poynting flux
sigma_sc	intop_surf(nrelPoav)/IO	m^{2}	Scattering cross section
sigma_abs	intop_vol(ewfd2.Qh)/IO	m^{2}	Absorption cross section
sigma_ext	sigma_sc+sigma_abs	m^{2}	Extinction cross section

The relative normal Poynting vector is defined from the outwards-facing normal vector and the automatically defined coordinate components of the Poynting flux.

STUDY I

Set up the solver for a few different combinations of angles. Because the second physics interface depends on the first one but not vice versa, the model can be solved sequentially.

I In the Model Builder window, click Study I.
2 In the Settings window for Study, locate the Study Settings section.
3 Clear the Generate default plots check box.

Parametric Sweep

I In the Study toolbar, click Parametric Sweep.
2 In the Settings window for Parametric Sweep, locate the Study Settings section.

3 Click Add.

4 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
theta (Polar angle of incidence in air)	$0 \mathrm{pi} / 6 \mathrm{pi} / 6 \mathrm{pi} / 4$	

5 Click Add.
6 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
phi (Azimuthal angle of incidence in both media)	$00 \mathrm{pi} / 4 \mathrm{pi} / 4$	

Step I: Wavelength Domain

I In the Study toolbar, click Study Steps and choose Frequency Domain> Wavelength Domain.

2 In the Settings window for Wavelength Domain, locate the Study Settings section.
3 In the Wavelengths text field, type Ida0.
4 Locate the Physics and Variables Selection section. In the table, clear the Solve for check box for the Electromagnetic Waves, Frequency Domain 2 (ewfd2) interface.

Step 2: Wavelength Domain 2

I In the Study toolbar, click Study Steps and choose Frequency Domain> Wavelength Domain.

2 In the Settings window for Wavelength Domain, locate the Study Settings section.
3 In the Wavelengths text field, type lda0.
4 Locate the Physics and Variables Selection section. In the table, clear the Solve for check box for the Electromagnetic Waves, Frequency Domain (ewfd) interface.

5 In the Study toolbar, click Compute.

RESULTS

Before generating the plots, set up the data sets for easy display of the surfaces of the substrate and the nanoparticle.

In the Model Builder window, expand the Results node.
Study I/Solution I (soll)
I In the Model Builder window, expand the Results>Data Sets node, then click Study I/ Solution I (soll).

2 In the Settings window for Solution, type Substrate in the Label text field.
3 Right-click Results>Data Sets>Substrate and choose Selection.
Selection
I In the Model Builder window, under Results>Data Sets>Substrate (soll) click Selection.
2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundaries 65 and 87 only.
Substrate I (soll)
I In the Model Builder window, under Results>Data Sets right-click Substrate (soll) and choose Duplicate.

2 In the Settings window for Solution, type Particle in the Label text field.

Selection

I In the Model Builder window, expand the Results>Data Sets>Particle (soll) node, then click Selection.

2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Selection list, choose Nanoparticle Surface.

Study I/Parametric Solutions I (sol2)

In the Model Builder window, under Results>Data Sets right-click Study I/
Parametric Solutions I (sol2) and choose Selection.

Selection

I In the Model Builder window, under Results>Data Sets>Study I/ Parametric Solutions I (sol2) click Selection.
2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Domain.
4 From the Selection list, choose Physical Domains.
5 Select the Propagate to lower dimensions check box.
The selection you just made will make the fields show up only in the physical domain. If you want to see how the relative field is damped in the PML, you can delete this selection.

3D Plot Group I

You will create plots for the y component and the norm of the background field and the total field. Begin with a plot of the background field, with the substrate but not the nanoparticle in place.

I In the Home toolbar, click Add Plot Group and choose 3D Plot Group.
2 In the Settings window for 3D Plot Group, type Background Field, y in the Label text field.

3 Locate the Data section. From the Data set list, choose Study I/ Parametric Solutions I (sol2).

Slice I
I Right-click Background Field, y and choose Slice.
2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Electromagnetic Waves, Frequency Domain>Electric>Electric field - V/m>ewfd.Ey - Electric field, y component.

3 Locate the Plane Data section. In the Planes text field, type 3.
4 In the Background Field, y toolbar, click Plot. You have now plotted the y component from the first interface, for the $\theta=\phi=\pi / 4$ solution. You can look at the different solutions using the Parameter Value list.

Background Field, y

I In the Model Builder window, under Results click Background Field, y.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Parameter value (theta, phi) list, choose 3: $\boldsymbol{t h e t a}=\mathbf{0 . 5 2 3 6}$, $\mathbf{p h i}=\mathbf{0 . 7 8 5 4}$.
4 In the Background Field, y toolbar, click Plot.
Color only the substrate surface to make it clear that you are looking at the field distribution without the nanoparticle.

Surface I

I Right-click Results>Background Field, \mathbf{y} and choose Surface.
2 In the Settings window for Surface, locate the Data section.
3 From the Data set list, choose Substrate (soll).
4 Locate the Expression section. In the Expression text field, type 1.
5 Click to expand the Title section. From the Title type list, choose None.
6 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
7 From the Color list, choose Gray. If you zoom in and rotate the plot you just created, it should look like Figure 2.

Background Field, y

The most convenient way to reproduce Figure 3 is to duplicate and modify the y component plot.

Background Field, y I
I Right-click Background Field, \mathbf{y} and choose Duplicate.
2 In the Settings window for 3D Plot Group, type Background Field, Norm in the Label text field.

Slice I
I In the Model Builder window, expand the Results>Background Field, Norm node, then click Slice I.

2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Electromagnetic Waves, Frequency Domain>Electric>ewfd.normE - Electric field norm - V/m.

3 In the Background Field, Norm toolbar, click Plot. The electric field norm from the first interface confirms that you have a standing wave pattern in the air and a propagating plane wave in the substrate.

Derived Values

In order to further confirm that the first interface was set up correctly, verify that the power reflection at the material interface agrees with the analytical result.

Global Evaluation I

I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, locate the Data section.
3 From the Data set list, choose Study I/Parametric Solutions I (sol2).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
ewfd.Rport_1	1	Reflectance, port 1

5 Click Evaluate. The results agree reasonably well with the analytical solution, as indicated in Table 2.

Background Field, y

To visualize the total field, start out with another copy of one of your background field plots. You will change the plot expression and add the particle.

Background Field, y I
I In the Model Builder window, under Results right-click Background Field, y and choose Duplicate.

2 In the Settings window for 3D Plot Group, type Total Field, y in the Label text field.

Slice I

I In the Model Builder window, expand the Results>Total Field, y node, then click Slice I.
2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Electromagnetic Waves, Frequency Domain $2>$ Electric $>$ Electric field - V/m>ewfd2.Ey - Electric field, y component.

Surface 2

I In the Model Builder window, under Results right-click Total Field, y and choose Surface.
2 In the Settings window for Surface, locate the Data section.
3 From the Data set list, choose Particle (soll).
4 Locate the Expression section. In the Expression text field, type 1.

5 Locate the Title section. From the Title type list, choose None.
6 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
7 From the Color list, choose Yellow. The plot should now look like Figure 4.
Total Field, y
Create a plot of the total field norm to reproduce Figure 5.
Total Field, y I
I Right-click Total Field, y and choose Duplicate.
2 In the Settings window for 3D Plot Group, type Total Field, Norm in the Label text field.

Slice I
I In the Model Builder window, expand the Results>Total Field, Norm node, then click Slice I.

2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Electromagnetic Waves, Frequency Domain 2>Electric>ewfd2.normE - Electric field norm - V/m.

3 In the Total Field, Norm toolbar, click Plot.

Derived Values

The cross section expressions that you defined are available for global evaluation.

Global Evaluation 2

I In the Results toolbar, click Global Evaluation.
2 In the Settings window for Global Evaluation, locate the Data section.
3 From the Data set list, choose Study I/Parametric Solutions I (sol2).
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
sigma_abs	$\mathrm{m}^{\wedge} 2$	Absorption cross section

5 Click Evaluate.
6 In the table, enter the following settings:

Expression	Unit	Description
sigma_sc	$\mathrm{m}^{\wedge} 2$	Scattering cross section

7 Click Evaluate.

8 In the table, enter the following settings:

Expression	Unit	Description
sigma_ext	$m^{\wedge} 2$	Extinction cross section

9 Click Evaluate. The results should resemble those in Table 1.

Total Field, Norm

The remaining instructions result in a plot of the power loss in the particle, reproducing Figure 6.

Total Field, Norm I
I In the Model Builder window, under Results right-click Total Field, Norm and choose Duplicate.

2 In the Settings window for 3D Plot Group, type Power Loss in the Label text field.
Slice I
I In the Model Builder window, expand the Results>Power Loss node, then click Slice I.
2 In the Settings window for Slice, click Replace Expression in the upper-right corner of the Expression section. From the menu, choose Component I>Electromagnetic Waves,
Frequency Domain $\mathbf{2}>$ Heating and losses>ewfd2.Qh - Total power dissipation density - W/ m^{3}.

3 Locate the Plane Data section. From the Plane list, choose XY-planes.
4 From the Entry method list, choose Coordinates.
5 In the Z-coordinates text field, type 50 [nm].

Surface 2

In the Model Builder window, under Results>Power Loss right-click Surface 2 and choose Disable.

