Quick Search

Jet Instability - Moving Mesh

Application ID: 4650

The Marangoni effect results in a slip velocity in the tangential direction on a fluid/fluid interface due to gradients in the surface tension coefficient. When the surface tension coefficient is constant, a two-fluid system may exist in static equilibrium. This is because the surface tension force may be exactly balanced by a jump in the pressure across the interface. The pressure is discontinuous across the interface, but the velocity field is zero everywhere. The presence of a gradient in the surface tension coefficient means that the flow must be non-stationary. This is due to the fact that any force arising from the variability of the surface tension coefficient acts only in the tangential direction on the interface. This must be balanced by viscous forces which are only present in a moving fluid. In this example, an initially stationary, infinitely long liquid jet breaks up due to a spatially varying surface tension coefficient.

This application was built using the following:

Microfluidics Module

The combination of COMSOL® products required to model your application depends on the physics interfaces that define it. Particular physics interfaces may be common to several products (see the Specification Chart for more details). To determine the right combination of products for your project, you should evaluate all of your needs in light of each product's capabilities, consultation with the COMSOL Sales and Support teams, and the use of an evaluation license.