The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.

Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. To download the MPH-files, log in or create a COMSOL Access account that is associated with a valid COMSOL license. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.


Flow Duct

The modeling of aircraft-engine noise is a central problem in the field of computational aeroacoustics. The acoustic field in a model of an axially symmetric aero-engine duct, generated by a noise source at the boundary, is computed and visualized. Results are presented for situations with as well as without a compressible irrotational background flow and for the cases of hard and lined duct ...

Tonpilz Transducer Array for Sonar Systems

This model sets up a linear array of nine tonpilz piezoelectric transducers in a 3x3 grid. A voltage is applied that includes a phase change across the three rows. The transducers are located in a box below the sea surface. The exterior acoustics are modeled using the *Pressure Acoustics, Boundary Elements* interface, which is coupled to the vibrating structures with the *Acoustic-Structure ...

Noise Radiation by a Compound Gear Train

Predicting the noise radiation from a dynamic system gives designers insight into the behavior of moving mechanisms early in the design process. For example, consider a gearbox in which the change in the gear mesh stiffness causes vibrations. These vibrations are transmitted to the gearbox housing through shafts and joints. The vibrating housing further transmits energy to the surrounding fluid, ...

Shape Optimization of a Tweeter Waveguide

This application illustrates how to use COMSOL’s optimization capabilities to automatically develop novel designs satisfying critical design constraints. The model optimizes a simple speaker geometry. Examples of constraints could include the radius of the loudspeaker or a desired minimum achievable sound-pressure level. To exemplify the optimization capabilities this application studies the ...

Multilayered Porous Material: Poroelastic Waves with Thermal and Viscous Losses (Biot-Allard Model)

In applications where pressure and elastic waves propagate in porous materials filled with air, both thermal and viscous losses are important. This is typically the case in insulation materials for rooms, lining materials in car cabins, or foams used in headsets and speakers. Another example is porous material in mufflers in the automotive industry. In many cases, these materials can be modeled ...

Spherical Piezoacoustic Transducer

This tutorial provides a step-by-step instruction to setup a fully-coupled 3D structural-acoustic interaction problem. Interaction between a vibrating spherical piezoelectric structure with the surrounding fluid media is considered. The piezoelectric material PZT-5H from the materials library is used. Instructions on how to create a radially polarized piezoelectric material in spherical ...

Organ Pipe Design

The Organ Pipe Designer allows you to study the design of an organ pipe and then play the sound and pitch of the changed design in a user-friendly app. The pipe sound includes the effects of different harmonics with different amplitudes. The organ pipe is modeled using the Pipe Acoustics, Frequency Domain interface in COMSOL Multiphysics. The simulation app allows you to analyze how the first ...

Dispersion Curves for a Fluid-Filled Elastic Pipe

The dispersion curves for a fluid-filled pipe with elastic walls are computed and compared with the analytical results for a pure elastic and an acoustic waveguide, respectively. Results show good agreement and also provide insight into the dynamics of the fluid-filled pipe at low and midrange frequencies.

Acoustics of a Pipe System with 3D Bend and Junction

This tutorial shows how to model the propagation of acoustic waves in large pipe systems by coupling the *Pipe Acoustics* interface to the *Pressure Acoustics* interface. The tutorial is set up in both the time domain and the frequency domain. 1D pipe acoustics is used to model the propagation in the long straight pipe portions. A 3D model of a pipe junction and pipe bend is coupled to the 1D ...

Acoustic Reflections off a Water-Sediment Interface

This model determines the reflection coefficient of plane acoustic waves, at different frequencies and at different angles of incidence, off a water-sediment interface. The ability of the Poroelasitc Waves interface to model the coupled acoustic and elastic wave in any porous substance (Biot's theory) is used to describe the water-sediment system. The model results are in good agreement with ...