The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.

Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.


Fuel Cell with Serpentine Flow Field

This example models the flow and mass transport in the channels and the gas diffusion layer (GDL) of a polymer electrolyte fuel cell. The cathode electrode reaction is modeled as a boundary condition, where the local current density depends on the overpotential and the local oxygen concentration. The overpotential is solved for along the cathode boundary by the use of a distributed DAE. The ...

Diffuse Double Layer

At the electrode-electrolyte interface, there is a thin layer of space charge in a diffuse double layer. This may be of interest when modeling devices such as electrochemical capacitors and nanoelectrodes. This tutorial example shows how to couple the Nernst-Planck equations to the Poisson equation, in order to describe diffuse double layer according to a Gouy-Chapman-Stern model. The physics ...

Primary Current Distribution in a Lead-Acid Battery Grid Electrode

This 3D model example demonstrates the use of the Primary Current Distribution interface for modeling current distributions in electrochemical cells. In primary current distribution, the potential losses due to electrode kinetics and mass transport are assumed to be negligible, and ohmic losses are govern the current distribution in the cell. Here you investigate primary current distribution in ...

Soluble Lead-Acid Redox Flow Battery

In a redox flow battery electrochemical energy is stored as redox couples in the electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by ...

Electrochemical Impedance Spectroscopy in a Fuel Cell

A fuel cell unit cell is modeled using the full Butler-Volmer expression for the anodic and cathodic charge transfer reactions. The anodic and cathodic overpotentials depend on the local ionic and electronic potentials, which are obtained from the charge balance equations for ionic and electronic current. A small sinusoidal perturbation of the potential around a given cell voltage is applied and ...

Ohmic Losses and Temperature Distribution in a Passive PEM Fuel Cell

In small PEM fuel cell systems (in the sub-100 W range) no active devices for cooling or air transport are normally used. This is due to the desire to minimize parasitic power losses from pumps and fans, and to reduce the system complexity, size, and cost. The reactants at the cathode are therefore transported by passive convection/diffusion. Also the heat dissipation occurs by passive transport ...

1D Isothermal Lithium-Air Battery

Rechargeable lithium-air batteries have recently attracted great interest mainly due to their high energy density. The theoretical value is about 11400 Wh/kg which is around 10 times greater than the lithium-ion batteries. In this tutorial, discharge of a lithium-air battery is simulated using the *Lithium-ion Battery* interface. The transport of oxygen (from external air) in the porous carbon ...

1D Lithium-Ion Battery Model for Determination of Optimal Battery Usage and Design

This application example is useful for investigation of the following: Voltage, polarization (voltage drop), internal resistance, state-of-charge (SOC), and rate capability, in lithium-ion batteries under isothermal conditions. Some of the listed properties play an important role in battery management systems (BMS) in, for instance, electric and hybrid electric vehicles (see figure). The more ...

Modeling of an Enzyme-Based Biofuel Cell Anode

Enzyme-based biofuel cells (EBFCs) use biomass and specific enzymes known as biocatalysts in order to convert chemical energy into electrical energy. At the anode of an EBFC, the biomass (substrate) is oxidized to produce protons and electrons. Mediators are used in the anode to shuttle the electrons from enzymes to electrodes. At the cathode, the oxidant (oxygen) reacts with the protons and ...

1D Lithium-Ion Battery Model for Internal Resistance and Voltage Loss Determination

This tutorial digs deeper into the investigation of rate capability in a battery and shows how the *Lithium-Ion Battery* interface is an excellent modeling tool for doing this. The rate capability is studied in terms of polarization (voltage loss) or the internal resistance causing this loss. A typical high current pulse test, namely a Hybrid Pulse Power Characterization (HPPC) test, is ...