Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Effective Diffusivity in Porous Materials

Transport through porous structures is usually treated using simplified homogeneous models with effective transport properties. This is in most cases a necessity, since the typical dimensions of the pores and particles making up the porous structure are several orders of magnitude smaller than the size of the domain that is to be modeled. This model introduces the concept of effective ...

Axisymmetric Transient Heat Transfer

This is a benchmark model for an axisymmetric transient thermal analysis. The temperature on the boundaries changes from 0 degrees C to 1000 degrees C at the start of the simulation. The temperature at 190 s from the anlysis is compared with a NAFEMS benchmark solution.

The Telegraph Equation

This model examines how telegraph wire transmits a pulse of voltage using the telegraph equation. The telegraph equation models mixtures between diffusion and wave propagation by introducing a term that accounts for effects of finite velocity to a standard heat or mass transport equation. In this model a small section of a telegraph wire is treated to study the pulse of voltage moving along ...

Eigenmodes of a Room

When designing a concert hall it’s extremely important to take the resonances into account. For a clear and neutral sound, the eigenfrequencies should be evenly spread through the registers. For the home stereo owner, who can’t actually change the shape of his living room, another question is more relevant: where should the speakers be put for best sound? To illustrate the effects we are ...

Automotive Muffler

This model simulates the pressure wave propagation in a muffler for a combustion engine. It uses a general approach for analysis of damping of the propagation of harmonic pressure waves. The model is solved in the frequency domain and provides efficient damping in a frequency range of 100-1000 Hz.

Micromixer

The development of mixers does often not only have to account for effectiveness, but also other factors must be involved, such as cost and complexity for manufacturing. The three models study a laminar static micro mixer with two parallel sets of split-reshape-recombine mixing elements. The mixer works through lamination of the streams without any moving parts and the mixing is obtained through ...

Conical Quantum Dot

Quantum dots are nano- or microscale devices created by confining free electrons in a 3D semiconducting matrix. Those tiny islands or droplets of confined “free electrons” (those with no potential energy) present many interesting electronic properties. They are of potential importance for applications in quantum computing, biological labeling, or lasers, to name only a few. Quantum dots ...

Magnetic Drug Targeting

Current research on methods to target chemotherapy drugs in the human body includes the investigation of biocompatible magnetic nanocarrier systems, for example magnetic liquids such as ferrofluids. This model investigates an external magnetic field and its interaction with blood flow containing a magnetic carrier substance. The model is based on the Maxwell and Navier-Stokes equations, where a ...

Steady-State 1D Heat Transfer with Radiation

The example shows a 1D steady-state thermal analysis including radiation to a prescribed ambient temperature. The temperature field from the solution of this benchmark model is compared with a NAFEMS benchmark solution.

Stresses in a Pulley

The stresses in a pulley connected to an engine that drives another pulley are studied in this model. A parametric analysis is conducted in order to study how the rotational speed affects the stress distribution in the pulley. The power at the pulley shaft remains constant, the moment (defined by the ratio of the power by the rotational speed) will thus decrease with increased speed. This ...

Quick Search