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INERTIAL PARTICLE FOCUSING (IFP) -
PROBLEM STATEMENT /
® Drag force (Fp) of the fluid flow is acting on particles

e Lift force (F_) is pushing particles away from the walls and gently away from the -
position of maximum speed in the cross-section \<

® Secondary Dean flow with vortex formation in the cross-section can scatter
particles around and facilitate mixing / migration of particles from inner to outer
radius in a curve. It is characterized by Dean Number De=Re*sqrt(D/(2*Rc))

® All the above effects combined will impact particle focusing
When does IFP happen?

Why is it important ? Literature available (2019) e Criteria 1: (r/Dh) > ~0.07
. p -

o https://www.nature.com/articles/s41598-019-52983-z Note: {rp/Dh)'=0.2:0.5 avoid channel obstruction

> micro-cell sorting / Lab-on-chip / other ® Criteria 2:De < ~30

> complex behavior Re up to 100 ®

» zig-zagging fluidic channels


https://www.nature.com/articles/s41598-019-52983-z

COMSOL MODEL AVAILABLE Segreé-Silberberg effect of inertia-induced lateral
AND ITS LIMITATIONS Particle focusing patterns

® The validated inertial particle focusing Comsol model is GRliIN2D

® The model is based on lift-force boundary condition implemented
only for parallel walls in 2D/3D

® Gentle change in the cross-section along the fluid channel path cannot be modeled \‘060 \
directly with implemented Comsol feature. ;\ / |

-Q—O—@-| | \

e Developed here: lift force based on wall-distance physics for constant/slowly- o/ é \é c--o

variable channel width — (but missing high-order fluid speed correctionin lift-off Ean S i U il N

forces in curves)
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GUI MODEL DEVELOPMENT AND

VALIDATION STRATEGY

® Reproduce results of 2D GUI model with a 3D
cylinder model / 3D trapezoidal pipe with increasing
cross-section

® Check 1D/2D particle normalized average distance
from axis in the output cross-section
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3D GUI MODELS WITH CONSTANT/VARIABLE CROSS-SECTION

Added lift force feature coupled to wall interface
physics: constant channel width

® 3D cylinder model shows the typical expected ring
focusing behavior
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3D SECONDARY (DEAN) FLOW e
IN CURVED MICRO-CHANNELS

® Dean flow with two recirculating vortex in the cross-section ‘

e Effect of Dean flow is that particle release in a point
at the inlet tend to rotate and spread in-plane.

it

e Higher order speed profile corrections to lift-forces in curves are not Dean flow - <
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3D GUI MODEL BASED ON CAD MODEL

Full 3D model with parametrized inlet length
(round pipe) and straight channel outlet length

Model is fully parametrized can be used for
evaluating different particle size/density, fluid
flow conditions, simulation times

Data can be picked and visualized directly in the
graphic windows

All plots and data and the solved model itself
can be saved.

Model runs in ~2h on fast PC with 64GB ram
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IFP TIMING VALIDATION

Comparison 2D/3D models:

Normalized distance from center, average (1)

umyjs
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® same maximum fluid speed
-> keep same speed gradient
on channel cross-section
® |nitial release of particle from axis
-> avoid particle non-uniform contribution to
average distance to axis
® same axis-wall distance (equivalent radius)
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IFP MULTIPHYSICS COUPLING WITH THERMAL MODEL

® Laminar, Thermal, Particle phyiscs coupled
® Thermal gradient or fluid/particle properties change with temperature can offset particle focusing
® The relevant effect is to change the focusing position at the outlet

» relevant for IFP design — 19 minutes simulation time (0.3mm OD, L=60cm)
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IFP MULTIPHYSICS COUPLING WITH THERMAL MODEL
HEATED/NON-HEATED RESULTS COMPARISONS
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CONCLUSIONS & NEXT STEPS

Conclusions

® Comsol modeling strategy and ist validation was implemented for 3D cylindrical and 3D rectangular cross-
section geometries with variable channel width, starting from Comsol 2D IFP benchmark model.

® The implemented approach can be used to model inertial particle focusing with any particle size/density and
generic channel cross-section to support advanced micro-fluidics design apps.

® Multi-physics coupling with thermal model is possible and simulation time is fast ~19min. (no thermal pulses)

Next steps
® Validation of the thermal model coupled with IFP model.

® The approach can be further refined to add higher order correction in lift-force due to curves
— solve IFP problem for generic zig-zagging fluidic channels

® The GUI can be automated to import any generic model from CAD
— requires dynamic definition of domains / inlet / outlet
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