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Abstract 
New design structure for generating and tuning the multi-bands of negative modulus is presented by introducing 

metamaterial concept. To effectively achieve selective noise reduction and sound transmission, acoustic 

metamaterial consisted of arrayed multiple resonators with extended necks is proposed. Also, mathematical 

expression for the effective bulk modulus is developed by using a mechanical-acoustic analogy. The bandwidths 

and starting frequencies of multi-bands are tuned by changing only the mass ratio of the extended necks, which 

are converted to equivalent mass elements. Numerical investigation by using FEM simulation (Acoustics module 

of COMSOL Multiphysics® ) is carried out to support the mathematical expression and tunability performance 

of multi-bands in the acoustic metamaterial. In view of the date of many passive acoustic filters and ultrasonic 

devices, it is expected that the proposed design structure can overcome the limitatio ns of sound blocking in a low 

frequency range and precise signal transmission. 
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Introduction 
Over the past few years, metamaterials which 

were artificially designed structures have enabled 

manipulation of physical phenomena beyond our 

knowledge [1-3]. Especially, since Fang et al. [4] 

presented an ultrasonic metamaterial consisted of 

arrayed Helmholtz resonators and explained its 

transmission characteristics by using dispersive 

characteristics of elastic modulus, not a few 

acoustic metamaterials have been proposed to 

exhibit unique acoustic phenomenon [5-7]. 

Regarding to classical issue in acoustics such as 

noise control [8,9], acoustic metamaterials with 

negative modulus [4] or negative density [7] can be 

advanced avenue for implementing evanescent 

wave phenomenon as a great alternative to 

attenuating sound waves [10]. In particular, due to 

the oscillating nature of local-resonance, dynamic 

effective properties with negative values generate 

the strong energy dissipation, resulting a stop band 

near the resonant frequency. Accordingly, various 

studies have been carried out to generate the stop 

band in local-resonance type acoustic metamaterials 

capable of achieving effective sound attenuation 

performance [4,7,11-13]. Several acoustic 

metamaterials for single-band gap have focused on 

generating the stop band with broad bandwidth for 

effective sound attenuation [7,14]. However, these 

acoustic metamaterials are operated at fixed 

frequency ranges. Thus, all geometrical parameters 

of the unit cell must be changed in order to shift the 

stop band significantly to desired frequency ranges, 

even if only a single stop band. In addition, 

generating a single-band gap is not suitable for 

selective noise control, which may be applied in 

some practical applications [15]. 

As one of the ways to overcome this drawback, 

acoustic metamaterials for multi-band gaps can be 

introduced that generate the new stop band by 

additional resonances [11-13]. Although the 

previous studies have proposed various attempts, 

however, there was no to tune the multi-band gaps, 

or no guideline for appropriate design of unit cell 

was provided. Besides, all of the aforementioned 

acoustic metamaterials were composed of a two-

dimensional array. On the other hand, in the case of 

one-dimensional acoustic metamaterials, it is more 

suitable for applying [15] or testing [4,16] for 

various ideas. 

In this paper, we present a new structure of 

acoustic metamaterial capable of generating the 

multi-band gaps. The proposed acoustic 

metamaterial consists of multiple resonators, which 

are designed considering the uncertainty of formula 

for a resonant frequency, and then develop a 

mathematical expression for resonant frequencies of 

a multiple resonator by using a mechanical-acoustic 

analogy. In other words, based on lumped acoustic 

element concept, multiple resonator can be treated 

as equivalent multi-degree-of-freedom vibration 

system, so that wave properties of acoustic 

metamaterial can be characterized by effective bulk 

modulus of its equivalent system. Also, this type of 

method for deriving the effective bulk modulus will 

facilitate the intuitional understanding of negative 

constitutive parameters  as well as the mathematical 

modeling for acoustic metamaterials. The 

bandwidths and starting frequencies of two stop 

bands are tuned sensitively and precisely by 

changing only the mass ratio of the extended necks, 

which are converted to equivalent mass elements. 

To support the developed mathematical expression 

and tunability performance of stop bands in 

acoustic metamaterial for multi-band gaps, 

numerical investigations (Acoustics module of 

COMSOL Multiphysics® ) will be shown. In view 

of the date of many acoustic metamaterial 

applications, the ability to tune the multi-band gaps 

may overcome the limitations of noise control 

devices which essentially exhibit passive responses. 
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1. Acoustic characteristics of a Helmholtz 

resonator 
A Helmholtz resonator has been widely used as a 

unit cell of acoustic metamaterials for selective 

noise reduction of an incident acoustic wave in a 

frequency range of interest. In this work, a multiple 

resonator is used as a unit cell of acoustic 

metamaterials for multi-band gaps. The pass and 

stop bands of such resonator-type acoustic 

metamaterials are strongly affected by the acoustic 

attenuation performance of a resonator used as a 

unit cell. Therefore, the performance of resonator-

type acoustic metamaterial for multi-bands can be 

derived and improved by closely investigating 

acoustic characteristics of single and multiple 

resonators. 

1.1. Single resonator 

Since Helmholtz presented it in his experiment 

[17], the well-known formula in Eq. (1) for a 

resonant frequency of a Helmholtz resonator has 

been used in design and theoretical analysis of a 

resonator for noise reduction [18]. A single 

resonator consists of one cavity and one neck, and 

their dimensions satisfying Eq. (1) are tuned to 

adjust the resonant frequency (𝑓𝑟 ) to a target 

frequency (𝑓𝑡 ) for noise reduction in a square cross -

sectional duct with a side of ℎ𝑑  in Fig. 1. 

𝑓𝑟 =
𝑐

2𝜋
√

𝑆𝑛

𝑉𝑐𝐿𝑛
′                          (1a) 

𝐿𝑛
′ = 𝐿𝑛 + 𝛿 , 𝛿 = 1.7√

𝑆𝑛

𝜋
               (1b) 

where 𝑆𝑛 and 𝐿𝑛  represent the cross-sectional area 

and length of a neck, respectively, and 𝐿𝑛
′  and 𝑉𝑐  are 

an effective length of a neck including an end 

correction (𝛿) and the cavity volume, respectively. 

The speed of sound in acoustic media (air) of a duct 

is denoted by 𝑐 . Since the formula in Eq. (1) allows 

the resonator designers to freely select the shape of 

a cavity and the cross section of a neck, it is 

assumed that a resonator in this work consists of a 

rectangular parallelepiped cavity and a rectangular 

parallelepiped neck, as shown in Fig. 1. 

 

 
Figure 1. Single Helmholtz resonator with an extended 

neck installed at a square cross-sectional duct. 

 

The formula in Eq. (1) is derived by using the 

mechanical-acoustic analogy under the assumptions 

of 𝐿𝑛 ≪ 𝜆, √𝑆𝑛 ≪ 𝜆 and √𝑉𝑐
3 ≪ 𝜆 , where 𝜆 is a 

wavelength [19]. The lumped acoustic elements can 

be converted to equivalent vibration elements; a 

cavity and a neck are replaced with a spring and a 

mass, respectively. The equivalent mass (𝑚eq ) and 

spring constant (𝑘eq ) are expressed as in Eq. (2). 

𝑚eq = 𝜌𝑆𝑛𝐿𝑛
′                       (2a) 

𝑘eq = 𝜌𝑐2𝑆𝑛
2/𝑉𝑐                     (2b) 

where 𝜌 is the fluid density in a resonator. It is 

worth mentioning that various combinations of 𝑆𝑛, 

𝐿𝑛  and 𝑉𝑐  exist for a target frequency because Eq. 

(1) has no special constraints on three unknown 

parameters (𝑆𝑛, 𝐿𝑛  and 𝑉𝑐 ) satisfying the design 

condition of 𝑓𝑡 = 𝑓𝑟 . For duct noise reduction, 

however, a combination of 𝑆𝑛, 𝐿𝑛  and 𝑉𝑐  must be 

selected so that the peak frequency in a 

transmission loss (TL) curve of a resonator should 

be equal to 𝑓𝑡 . 

Considering 𝑓𝑟 = (1/2𝜋)√𝑘eq/𝑚eq, the neck’s 

length and the cavity volume should be increased or 

the neck’s cross-sectional area should be decreased 

for a lower resonant frequency, and vice-versa. An 

extended neck as shown in Fig. 1 can be considered 

as an alternative method to increase the equivalent 

mass of a neck without increasing the value of 𝐿𝑛 . 

In this case, Eq. (1b) is replaced by 𝐿𝑛
′ = 𝐿𝑛 +

ℎ𝑝 + 𝛿 , where ℎ𝑝  is the extended length of the 

neck. This means that the extended neck enables us 

to increase an equivalent mass of a resonator 

without increasing the outer length (𝐿𝑛) of a neck 

for a lower resonant frequency. 

1.2. Multiple resonator 

As shown in Fig. 2(a), the multiple resonator 

consisting of more than two resonators can be 

converted to an equivalent multi-degree-of-freedom 

vibration system under the same assumptions as 

those for a single resonator. 

 

 
Figure 2. Schematics of (a) multiple resonator and (b) 

equivalent multi-degree-of-freedom vibration system. 

 

Each resonator has its extended neck. Assuming the 

harmonic motion of each equivalent mass and 

acoustic pressure (𝑞�̃�
(𝑡) = 𝑞𝑖𝑒

𝑗𝜔𝑡  and 𝑝 = 𝑝𝑒𝑗𝜔𝑡  

with 𝑗 = √−1), the governing equation in Eq. (3) 
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with Eq. (4) is obtained for the equivalent vibration 

system in Fig. 2(b). When each resonator is 

installed at a duct as a single resonator as shown in 

Fig. 1, its resonant frequency is denoted by 𝑓𝑖 =

(1/2𝜋)√𝑘𝑖/𝑚𝑖, where 𝑘𝑖  and 𝑚𝑖 are equivalent 

stiffness and mass, respectively. They are functions 

of the dimensions of each resonator as expressed in 

Eq. (5). The resonant frequencies (𝑓𝑖
∗) of a multiple 

resonator are calculated from Eq. (6a), and the 

displacement of the 1st equivalent mass (𝑚1) is 

expressed as in Eq. (6b). The detailed procedure is 

explained in Appendix. 
[𝐊]𝐐 = 𝐅                           (3a) 

𝐐 = [𝑞1̃ 𝑞2̃⋯𝑞�̃� ⋯ 𝑞�̃�]
𝑇, 𝐅 = [�̃�𝑆𝑛1

 0⋯0⋯0]𝑇  (3b) 

[𝐊] =

[
 
 
 
 
 
 
 
 
𝐾1,1 𝐾1 ,2 0 0 0 ⋯ ⋯ 0

𝐾2 ,1 𝐾2 ,2 𝐾2,3 0 ⋮ ⋮ ⋮ 0

0 𝐾3 ,2 ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

⋮ 0 ⋱ ⋱ 𝐾𝑖−1,𝑖 ⋱ 0 ⋮

⋮ ⋮ ⋱ 𝐾𝑖 ,𝑖−1 𝐾𝑖 ,𝑖 𝐾𝑖,𝑖+1 ⋱ ⋮

⋮ ⋮ ⋮ 0 𝐾𝑖+1,𝑖 ⋱ ⋱ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 𝐾𝐼 −1,𝐼

0 0 0 0 ⋯ 0 𝐾𝐼 ,𝐼−1 𝐾𝐼,𝐼 ]
 
 
 
 
 
 
 
 

 (3c) 

𝐾1,1 = 𝑘1 −𝑚1𝜔
2, 𝜔 = 2𝜋𝑓           (4a) 

𝐾𝑖 ,𝑖 = 𝑚𝑖𝜔
2 − 𝑘𝑖−1 − 𝑘𝑖, (𝑖 = 2,3, ⋯ , 𝐼)    (4b) 

𝐾1,2 = −𝑘1, 𝐾2,1 = 𝑘1                (4c) 

𝐾𝑖 ,𝑖+1 = 𝐾𝑖+1,𝑖 = 𝑘𝑖, (𝑖 = 2,3, ⋯ , 𝐼 − 1)     (4d) 

𝑚𝑖 = 𝜌𝑆𝑛𝑖
𝐿𝑛𝑖
′ , 𝑘𝑖 = 𝜌𝑐2

𝑆𝑛𝑖
2

𝑉𝑐𝑖

                (5a) 

𝐿𝑛𝑖
′ = 𝐿𝑛𝑖

+ℎ𝑝𝑖
+ 𝛿𝑖, 𝛿𝑖 = 1.7√

𝑆𝑛𝑖

𝜋
       (5b) 

det[𝐊] = 0                         (6a) 

𝑞1 =
𝐶1,1�̃�⋅𝑆𝑛1

det[𝐊]
=

𝑀1,1�̃�⋅𝑆𝑛1

∑ (−1)𝑗+𝑘𝐾𝑗 ,𝑘𝑀𝑗,𝑘
𝐼
𝑗=1

       (6b) 

The resonant frequencies  (𝑓1
∗ and 𝑓2

∗) of a double 

resonator are obtained from the characteristic 

equation as expressed in Eq. (7a). The displacement 

of the 1st equivalent mass of a double resonator is 

expressed as in Eq. (7b). The coefficients in the 

characteristic equation include the mass ratio of 

necks as well as resonant frequencies of single 

resonators. 

𝜔4 − (𝜔1
2/𝜃1 + 𝜔1

2 + 𝜔2
2)𝜔2 +𝜔1

2𝜔2
2 = 0, 

𝜃1 = 𝑚2/𝑚1 (7a) 

𝑞1 =
�̃�𝑆𝑛1𝐾2 ,2

𝐾1 ,1𝐾2,2−𝐾1 ,2𝐾2,1
                      (7b) 

Fig. 3 compares the TL curves of the double 

resonators of different mass ratios for four cases; 

Case 1-1 to 1-4. All single resonators are tuned for 

the same resonant frequency (𝑓𝑟 = 300 Hz), and the 

resonant frequencies (𝑓1
∗ and 𝑓2

∗) and the mass 

ratios (𝑚2/𝑚1) of all double resonators are 

summarized in Table 1 (Specific values of 

geometric parameters of the resonators are 

summarized in Table 2). 

 

 
Figure 3. Numerically calculated transmission loss of 

double resonators depending on mass ratio. 

 

Case 

Double resonator 

𝑓1
∗  [Hz] 𝑓2

∗  [Hz] 𝑚2/𝑚1 1st 

resonator 

2nd 

resonator 

1-1 Resonator F Resonator A 168 522 0.75 

1-2 Resonator A Resonator A 180 488 1.00 

1-3 Resonator A Resonator F 192 456 1.34 

1-4 Resonator D Resonator E 226 385 4.98 

Table 1: Resonant frequencies and mass ratios for 

various combinations of Case 1. 

 
Symbol R-A R-B R-C R-D R-E R-F 

𝐿𝑛  

[mm] 
34 13 55 5 75 34 

𝑆𝑛  

[mm2] 
13.14 × 13.14 

ℎ𝑐  

[mm] 
106.09 146.8 75.36 167.12 37.28 79 

𝑆𝑐 

[mm2] 
34 × 34 39 × 39 

33.5 × 

33.5 

35 × 

55.5 

35 × 

50 

34 × 

34 

ℎ𝑝  

[mm] 
0 0 0 0 0 21.08 

Table 2: Specific values of geometric parameters of 
Resonator A to F (R-A, R-B, R-C, R-D, R-E and R-F). 

 

As the mass ratio increases, the first peak frequency 

(𝑓1
∗) of the double resonator increases and its 

second peak frequency (𝑓2
∗) decreases. It implies 

that the mass ratio can change the difference 

between two resonant frequencies of a double 

resonator. The fact could be used for tuning the 

multi-bands of a multiple resonator-type acoustic 

metamaterial as well as a double resonator-type 

acoustic metamaterial. 

2. Effective bulk modulus for acoustic 

metamaterial with a multiple resonator 
Fig. 4(a) shows a unit cell used to develop the 

effective bulk modulus of the acoustic 

metamaterial. In the unit cell model, a control 

volume (𝑉) in a duct is surrounded by imaginary 

surfaces, which are represented by broken lines, in 

a stationary state. The control volume of a duct 

changing due to pressure difference between both 

sides of the control volume is denoted by 𝑉′ , which 

is surrounded by dashed-dotted lines. A net volume 

change (∆𝑉net ) through the imaginary surfaces 

surrounding the control volume consists of volume 

change (∆𝑉) in a duct and volume change (∆𝑉𝑟) in 

the 1st resonator’s neck, as expressed in Eq. (8). 

∆𝑉net = ∆𝑉 + ∆𝑉𝑟                       (8) 

Case 1-1

Case 1-3

Case 1-2

Case 1-4
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Fig. 4(b) shows an equivalent duct, where the 

bulk modulus (𝐵) is replaced with an effective bulk 

modulus (𝐵eff). 

 

 
Figure 4. Schematics of (a) unit cell and (b) equivalent 

system for the unit cell. 

 

A bulk modulus in a duct connected with a multiple 

resonator in Fig. 4(a) and the effective bulk 

modulus in Fig. 4(b) are defined as in Eqs. (9a) and 

(9b), respectively. 

𝐵 = −𝑉
∆�̃�

∆𝑉net
                        (9a) 

𝐵eff = −𝑉
∆�̃�

∆𝑉
                         (9b) 

From Eqs. (8), (9a) and (9b), the effective bulk 

modulus is expressed as a function of the ratio 

between ∆𝑉𝑟  and ∆𝑉 as in Eq. (10a). Using ∆𝑉𝑟 =
𝑆𝑛1

𝑞1̃, Eq. (10a) is converted to Eq. (10b). 

𝐵eff = 𝐵(1 + ∆𝑉𝑟/∆𝑉)                (10a) 

𝐵eff = 𝐵(1 + 𝑞1̃𝑆𝑛1
/∆𝑉)              (10b) 

Recalling that the acoustic pressure is 

approximately equal to the pressure difference (𝑝 ≅
∆𝑃), the effective bulk modulus of an acoustic 

metamaterial with a multiple resonator is expressed 

as in Eq. (11a), and it is simplified to Eqs. (11b) 

and (11c) when double and triple resonator are used 

as a unit cell, respectively. 

𝐵eff
−1(𝜔) = 𝐵−1 [1 +

𝑉𝑐1

𝑉

𝑀1 ,1𝑘1

∑ (−1)𝑗+𝑘𝐾𝑗 ,𝑘𝑀𝑗,𝑘
𝐼
𝑗=1

], 

(𝑘 = 1,  2,  ⋯ , 𝐼), 𝐼 ≥ 2  (11a) 

𝐵eff
−1(𝜔) = 𝐵−1 [1 +

𝑉𝑐1

𝑉

𝑘1

𝐾1 ,1−𝐾1 ,2𝐾2,1/𝐾2,2
]  (11b) 

𝐵eff
−1(𝜔) = 𝐵−1 [1 +

𝑉𝑐1

𝑉

𝐾2,2𝐾3,3−𝑘2
2

𝐾1,1𝐾2,2𝐾3,3/𝑘1−𝐾1,1𝑘2
2/𝑘1+𝑘1𝐾3,3

] (11c) 

In Eq. (11b), if 𝑚2 increases infinitely, the effective 

bulk modulus for a double resonator is simplified to 

Eq. (12), which is the same one as presented for a 

single resonator in Ref. [4]; the expression was 

derived by using an acoustic-electrical analogy for a 

single resonator. 

𝐵eff
−1(𝜔) = 𝐵−1 [1 −

𝐹1𝜔1
2

𝜔2−𝜔1
2], 𝜔1 = √

𝑘1

𝑚1
, 

𝐹1 =
𝑉𝑐1

𝑉
 (12) 

Fig. 5(a) compares the effective bulk modulus 

curve, which is plotted on a log scale, and the 

transmission coefficient curve, which is plotted on a 

linear scale, of an acoustic metamaterial with a 

double resonator, which consists of Resonator B 

(the 1st resonator) and Resonator C (the 2nd 

resonator). The resonant frequencies  (𝑓1
∗ and 𝑓2

∗) of 

the double resonator are 212 and 420 Hz. The 

acoustic metamaterial consists of 24 unit cells, and 

the subwavelength separation between the arrayed 

double resonators is much less than the wavelength 

in interest (∆𝑥 = 0.04 m ~ 𝜆/30 ). In the frequency 

range of negative modulus (𝐵eff < 0) which is 

represented by light orange colored rectangles, the 

transmission coefficient (|t|) is extremely low. 

Fig. 5(b) compares the propagations of incident 

acoustic pressure in a duct depending on its 

frequencies (250, 365, 500 Hz). At the two 

frequencies (250 and 500 Hz) in the stop bands, the 

incident acoustic wave with a higher magnitude at 

the left end was decayed extremely after passing the 

third unit cell. In contrast, an incident acoustic 

wave at 365 Hz in the pass band is freely 

transmitted to the other end of a duct. 

 

 
Figure 5. (a) Effective bulk modulus and numerically 

calculated transmission coefficient and (b) propagations 

of incident acoustic waves depending on frequency. 

 

3. Effects of necks’ mass ratio on stop and 

pass bands 

3.1. Double resonator consisting of two 

resonators of the same resonant frequencies 

As seen in Fig. 5(a), the starting frequencies of 

the stop bands are approximately equal to the 

resonant frequencies (𝑓1
∗ and 𝑓2

∗) of a double 

resonator, which change due to mass ratio of two 

necks, as observed in subsection 1.2. In this section, 

we investigate the effect of necks’ mass ratio on the 
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stop bands of the acoustic metamaterial when two 

resonators of a double resonator have the same 

resonant frequencies (𝑓1  and 𝑓2 ) and different 

dimensions. Four cases are considered depending 

on the mass ratio as summarized in Table 1. Fig. 

6(a) compares the transmission coefficient curves 

of four cases. As the mass ratio increases, the 1st 

stop band becomes narrower but the 2nd stop band 

becomes wider. This phenomenon results from the 

change of the resonant frequencies (𝑓1
∗ and 𝑓2

∗) of 

each double resonator, which approximately 

coincides with the starting frequencies of stop 

bands, as investigated in the previous section. Also, 

this change makes the pass band between two stop 

bands decrease or increase. The changing trend in 

stop bands approximately coincides with the change 

in frequency band of negative values of the 

effective bulk modulus curve in Fig. 6(b). 

 

 
Figure 6. (a) Numerically calculated transmission 

coefficients and (b) effective bulk modulus of acoustic 
metamaterials with double resonators in Case 1. 

 

Investigation on the combination of two 

resonators in each case gives an interesting insight. 

First, Cases 1-1 and 1-3 used the same pairs of 

resonators but different connecting order; Resonator 

F in the 1st resonator and Resonator A in the 2nd 

resonator in Case 1-1, and Resonator A in the 1st 

resonator and Resonator F in the 2nd resonator in 

Case 1-3. While the 1st stop band in Case 1-1 is 

wider than that in Case 1-3, the 2nd stop band in 

Case 1-1 is narrower than that in Case 1-3. Second, 

since Resonator F included an extended neck, the 

equivalent mass of the resonator could be much 

increased without an increase in its outer 

dimensions. 

3.2. Double resonator consisting of two 

resonators of the different resonant frequencies 

This section investigates the acoustic 

transmission characteristics of a double resonator 

consists of two single resonators, whose resonant 

frequencies do not coincide with each other. In the 

first case study (Case 2), the resonant frequencies 

(𝑓1  and 𝑓2) of the 1st and 2nd resonators are tuned to 

300 and 600 Hz, respectively. In the second case 

study (Case 3), the resonant frequencies are tuned 

to 600 and 300 Hz, respectively. Dimensions of 

additionally used resonators and the combination of 

single resonators in each double resonator are 

summarized in Tables 3 and 4. 

 
Symbol R-G R-H R-I R-J R-K 

𝐿𝑛  

[mm] 
10 30 42.5 7.5 5 

𝑆𝑛  

[mm2] 

ℎ𝑐  

[mm] 
80.37 53.68 23.11 85.72 90.53 

𝑆𝑐 

[mm2] 

28.05 

× 

28.05 

25 × 

25 

33.5 × 

33.5 

28.8 × 

28.8 

29.95 

× 

29.95 

Table 3: Specific values of geometric parameters of 

Resonator G to L (R-G, R-H, R-I, R-J and R-K). 

 

Case 

Double resonator 

𝑓1
∗  [Hz] 𝑓2

∗  [Hz] 𝑚2/𝑚1 1st 

resonator 

2nd 

resonator 

2-1 Resonator A Resonator G 231 718 0.49 

2-2 Resonator B Resonator H  269 637 1.66 

2-3 Resonator D Resonator I 277 621 3.13 

3-1 Resonator G Resonator A 224 770 2.06 

3-2 Resonator J Resonator C  241 713 3.36 

3-3 Resonator K Resonator E 251 680 4.98 

Table 4: Resonant frequencies and mass ratios for 

various combinations of Cases 2 and 3. 

 

Fig. 7 compares the transmission coefficient 

curves of Cases 2 and 3. In all cases, the 

transmission coefficient curves have two stop 

bands, which were determined by using the 

criterion of |t| ≤ 10−2. 

 

 
Figure 7. Transmission coefficients of acoustic 

metamaterials with double resonators in (a) Case 2 and 

(b) Case 3. 

 

While the starting frequency of the 1st stop band 

increases with the mass ratio, that of the 2nd stop 

band decreases with the increasing mass ratio. This 
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result coincides with the phenomenon observed in 

the previous subsection, and it is due to the change 

of the resonant frequencies  (𝑓1
∗ and 𝑓2

∗) of the 

double resonator changing with the mass ratio as 

summarized in Table 4. The bandwidths of the 1st 

and 2nd stop bands are strongly correlated with 

single resonators tuned to 300 and 600 Hz, 

respectively. Therefore, the bandwidths of two stop 

bands are different depending on the order of two 

resonators, i.e., resonant frequency ratios (𝑓2/𝑓1 ) of 

the two single resonators ; while the 1st stop band is 

wider than the 2nd stop band in Case 2, the 2nd stop 

band is wider than the 1st stop band in Case 3. 

3.3 Normalized bandwidth of a double resonator 

The frequency range (bandwidth) of each stop 

band of a double resonator-type acoustic 

metamaterial can be obtained analytically from the 

condition of 𝐵eff (𝜔) < 0 and is expressed in Eq. 

(13) with its lower and upper limit frequencies (𝑓𝑙𝑖
∗ 

and 𝑓𝑢𝑖
∗ ). The lower limit frequencies of each stop 

bands are resonant frequencies of a double 

resonator, which are calculated from Eq. (7a), and 

the lower and upper limit frequencies are expressed 

by using the resonant frequencies (𝑓1  and 𝑓2 ) of a 

double resonator and the mass ratio (𝑚2/𝑚1) of its 

necks as shown in Eqs. (13b) and (13c). 

𝑓𝑙𝑖
∗ < 𝑓 < 𝑓𝑢𝑖

∗ , (𝑖 = 1, 2)            (13a) 

(
𝑓𝑙1
∗

𝑓1
)
2

(
𝑓𝑙2
∗

𝑓1
)
2} =

1+𝜃1{1+(
𝑓2

𝑓1
)
2

}±[[1+𝜃1{1+(
𝑓2

𝑓1
)
2

}]
2

−4𝜃1
2(

𝑓2

𝑓1
)
2

]

1
2

2𝜃1
, 

𝜃1 = 𝑚2/𝑚1  (13b) 

(
𝑓𝑢1
∗

𝑓1

)
2

(
𝑓𝑢2
∗

𝑓1

)
2}=

[
 
 
 
 
 1+(1+𝐹1 )𝜃1+𝜃1+(

𝑓2
𝑓1

)
2

±[{1+(1+𝐹1 )𝜃1+𝜃1 (
𝑓2
𝑓1

)
2
}

2

−4𝜃1[(1+𝐹1 ){1+(
𝑓2
𝑓1

)
2
𝜃1}−1]]

1

2

]
 
 
 
 
 

2𝜃1

, 

𝜃1 = 𝑚2/𝑚1  (13c) 

where 𝐹1  is the ratio of the cavity volume (1st 

resonator) and the control volume, i.e., 𝐹1 = 𝑉𝑐1/𝑉. 

Fig. 8(a) shows the normalized resonant 

frequencies of the double resonator depending on 

the mass ratio for various resonant frequency ratios 

(𝑓2/𝑓1 ) of the two single resonators. The 

normalized resonant frequencies are calculated by 

dividing the resonant frequencies (𝑓1
∗ and 𝑓2

∗) of the 

double resonator by the lowest one (𝑓1 ) among the 

resonant frequencies of two single resonators. The 

lower limit frequencies of the two stop bands 

increase with the 𝑓2/𝑓1 . The difference between the 

starting frequencies (lower limit frequencies) 

decreases with the increasing mass ratio and 

becomes a minimum value for 𝑓2/𝑓1 = 1. 

Fig. 8(b) shows the normalized bandwidths of 

two stop bands depending on the mass ratio for 

various resonant frequency ratios (𝑓2/𝑓1 ) of the two 

single resonators. The normalized bandwidths are 

calculated by dividing the bandwidth (𝑓𝑢𝑖
∗ − 𝑓𝑙𝑖

∗ ) of 

each stop band by lowest one (𝑓1 ) among the 

resonant frequencies of two single resonators. For 

each case of 𝑓2/𝑓1 , all normalized bandwidths  of 

two stop bands generally increase with the mass 

ratio until the crossing point where the normalized 

bandwidths of two stop bands  become equal to each 

other. However, after the crossing point, the change 

of each normalized bandwidth of two stop bands 

shows a truly opposite trend depending on the mass 

ratio. Also, the mass ratio corresponding to the 

crossing point increases with the resonant 

frequency ratios (𝑓2/𝑓1 ) of two resonators. 

 

 
Figure 8. (a) Normalized resonant frequencies of the 

double resonator as a function of the mass ratio for 

various resonant frequency ratios ( 𝑓2/𝑓1 ) and (b) 

normalized bandwidths of two stop bands as a function of 

the mass ratio for various frequency ratios. 

 

Conclusions 
New acoustic metamaterial with multi-bands of 

negative modulus was presented. The proposed 

acoustic metamaterial consists of a duct and arrayed 

multiple resonators with extended necks, and all 

resonators in each multiple resonator have the same 

or different resonant frequencies each other. The 

mathematical expression for the effective bulk 

modulus was developed first for a double resonator 

with extended necks, which is simplified into 

equivalent two-degree-of-freedom vibration system, 

and was extended for a multiple resonator. The 
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bandwidths and starting frequencies  (resonant 

frequencies) of two stop bands can be tuned by 

varying only the mass ratio of extended necks , 

which are converted to equivalent mass elements. 

From the mathematical expression for the negative 

modulus, analytical results that can serve as an 

appropriate guideline for the design of acoustic 

metamaterial with multi-bands was derived. The 

proposed acoustic metamaterial, namely, acoustic 

meta-filter, is expected to be applicable to selective 

noise reduction in a low frequency range and signal 

transmission in ultrasonic devices. 
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Appendix 
As shown in Eq. (3c), the stiffness matrix of 

multi-degree-of-freedom vibration system in Fig. 

2(b) is expressed as 

[𝐊] =

[
 
 
 
 
 
 
 
 
𝐾1,1 𝐾1,2 0 0 0 ⋯ ⋯ 0
𝐾2,1 𝐾2,2 𝐾2,3 0 ⋮ ⋮ ⋮ 0
0 𝐾3,2 ⋱ ⋱ ⋱ ⋱ ⋮ ⋮

⋮ 0 ⋱ ⋱ 𝐾𝑖−1,𝑖 ⋱ 0 ⋮
⋮ ⋮ ⋱ 𝐾𝑖 ,𝑖−1 𝐾𝑖 ,𝑖 𝐾𝑖 ,𝑖+1 ⋱ ⋮
⋮ ⋮ ⋮ 0 𝐾𝑖+1,𝑖 ⋱ ⋱ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 𝐾𝐼−1,𝐼

0 0 0 0 ⋯ 0 𝐾𝐼 ,𝐼−1 𝐾𝐼 ,𝐼 ]
 
 
 
 
 
 
 
 

. (A1) 

Then, a determinant of an 𝐼 × 𝐼 matrix [𝐊] = [𝐾𝑗,𝑘]  

for 𝐼 ≥ 2 is expressed as in Eq. (A2) [20]: 

det[𝐊] = 𝐾𝑗,1𝐶𝑗,1 + 𝐾𝑗,2𝐶𝑗,2 + ⋯+ 𝐾𝑗,𝐼𝐶𝑗,𝐼, 

(𝑗 = 1,2, ⋯ , 𝐼) (A2) 

𝐶𝑗,𝑘 = (−1)𝑗+𝑘𝑀𝑗,𝑘                      (A3) 

where 𝑀𝑗,𝑘  is a determinant of order 𝐼 − 1, namely, 

the determinant of the submatrix of [𝐊]  obtained 

from [𝐊]  by omitting the row and column of the 

entry 𝐾𝑗,𝑘, that is, the 𝑗 𝑡ℎ row and the 𝑘𝑡ℎ column. In  

this way, det [𝐊]  is defined in terms of 𝐼 
determinants of order 𝐼 − 1, each of which is, in turn, 

defined in terms of 𝐼 − 1 determinants of order 𝐼 −
2, and so on – until we finally arrive at second-order 

determinants. Note that, 𝑀𝑗 ,𝑘 is called the minor of 

𝐾𝑗,𝑘 in det [𝐊], and 𝐶𝑗,𝑘 the cofactor of 𝐾𝑗,𝑘 in det [𝐊]. 

Eq. (A2) may also be written in terms of minors . 
det[𝐊] = ∑ (−1)𝑗+𝑘𝐾𝑗,𝑘𝑀𝑗,𝑘

𝐼
𝑘=1 , (𝑗 = 1,2,⋯ , 𝐼) (A4) 

To determine the inverse [𝐊]−1 of a nonsingular 

𝐼 × 𝐼 matrix [𝐊], we can use a variant of the Gauss 

elimination, called the Gauss-Jordan elimination  

[20]. 

[𝐊]−1 =
1

det [𝐊]
[𝐶𝑗,𝑘]

𝑇
=

1

det[𝐊]
[

𝐶1,1 𝐶2,1 ⋯ 𝐶𝐼,1

𝐶1,2 𝐶2,2 ⋯ 𝐶𝐼,2

⋅ ⋅ ⋯ ⋅
𝐶1,𝐼 𝐶2,𝐼 ⋯ 𝐶𝐼,𝐼

] (A5) 

Now, substituting Eq. (A5) in the governing 

equation (A6), displacement matrix is derived as in 

Eq. (A8) where the 𝐅 = [𝑝 ⋅ 𝑆𝑛1
0⋯ 0 ⋯0]

𝑇
. 

[𝐊]𝐐 = 𝐅                            (A6) 

  𝐐 = [𝐊]−1𝐅                         (A7a) 
[�̃�1 �̃�2 ⋯ �̃�𝑖  ⋯ �̃�𝐼 ]

𝑇 = 

1

det[𝐊]
[

𝐶1,1 𝐶2,1 ⋯ 𝐶𝐼,1

𝐶1,2 𝐶2,2 ⋯ 𝐶𝐼,2

⋅ ⋅ ⋯ ⋅
𝐶1,𝐼 𝐶2,𝐼 ⋯ 𝐶𝐼,𝐼

] [𝑝 ⋅ 𝑆𝑛1
0⋯0⋯ 0]

𝑇
 (A7b) 

Finally, displacement of the 1st equivalent mass 

(𝑚1) can be achieved as 

𝑞1 =
𝐶1,1�̃�⋅𝑆𝑛1

det[𝐊]
=

𝑀1 ,1�̃�⋅𝑆𝑛1

∑ (−1)𝑗+𝑘𝐾𝑗 ,𝑘𝑀𝑗,𝑘
𝐼
𝑗=1

.     (A8) 

 

 


