Progress in HIPER Space Propulsion Device Simulations Paul Keutelian¹, Akshata Krishnamurthy¹, George Chen¹, Benjamin Ulmen¹, and Dr. George H. Miley^{*1} ¹University of Illinois at Urbana-Champaign, Dept. of Nuclear, Plasma, and Radiological Engineering. Urbana, IL 61801

Introduction: A simulation of an advanced space thruster comprised of a coupled Helicon and IEC device is needed to accelerate design. Current work focuses on the simulation of the IEC device with a modified Einzel Lens to collimate and extract

Results: COMSOL shows promise in simulating IEC type plasma devices. The next step is to achieve reliable convergence in simulations by working with the solvers and properly characterizing the problem.

plasma for thrust.

Figure 4. Electric Potential Profile of Asymmetric IEC Grid

Figure 5. Jet Mode Ion Density

Figure 1. HIIPER in Flight Computational Methods: The approach is to develop simple models and add complexity as familiarity is achieved with COMSOL's solutions with known results.

Variable	Value	Units	
Peak Density	5E13	{ â ÇË D	
Pressure	10	mTorr	
Ion Peak Velocity	6E4	m/s	
Ion Energy	2	keV	z x

 Table 1. Test Characteristics

Once achieved, the IEC and Einzel Lens will be combined in a single simulation. The primary area of interest is the DC Discharge Plasma Module.

Figure 6. Einzel Lens Particle Trajectories

Conclusions: Simulations are returning results consistent with expected results Once all simulation objectives are accomplished, rapid design iteration can be done through COMSOL.

References:

Figure 3. Formation of Microchannels in Grid Plasma

- 1. Miley, George H., et al. Discharge Characteristics of the Spherical Inertial Electrostatic Confinement (IEC) Device, IEE Transactions of Plasma Science, 25, No. 4, 733-739 (1997)
- 2. Nebel, R.A., et al., Theoretical and Experimental Studies of Kinetic Equilibrium and Stability of the Virtual Cathode in an Electron Injected Inertial Electrostatic Confinement Device, Physics of Plasmas, 12(1), 1-8 (2005)

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston