2-Dimensional Blood Shear Modeling in a Blood Cooling Catheter Ryan A. Sikorski¹, Benjamin Chapman¹,Thomas L. Merrill¹

1. Rowan University, Department of Mechanical Engineering, 201 Mullica Hill Road, Glassboro, NJ

Objective

• To model the effects of shear stress on a blood cooling catheter using computational fluid dynamics and determine the likelihood of hemolysis.

Introduction

- Tissue damage associated with heart attack is the lead cause of death in the United States [1].
- A catheter system was developed to deliver 2-4 C temperature reduction within five minutes.
- The system pumps blood from the patient through an external heat exchanger, delivering it locally to cardiac tissue.
- Hemolysis may result from exposure to shear stress greater than 150 Pa [2].
- Previous lab experimental data allows for direct comparison to computational simulations.
- A 2-Dimensional concentric catheter was simulated within COMSOL using CFD.

Governing COMSOL Equations

$$\rho(u \cdot \nabla)u = \nabla \cdot \left[-p| + \mu(\nabla u + (\nabla u)^T) - \frac{2}{3}\mu(\nabla \cdot u)| \right] + F$$

$$\nabla \cdot (\rho u) = 0$$

Experimental Methods

Fig. 1 Cooling Catheter Experimental Setup.

Boundary Conditions and Geometry

CFD Input Parameters			
Parameter	Variable	Expression	Unit
Catheter Inner Diameter	IDc	1.422E-3	[m]
Catheter Outer Diameter	ODc	2.000E-3	[m]
Guide Wire Radius	ODw	3.556E-4	[m]
Flow Cross Section Area	Α	Pi*(IDc/2)^2	[m²]
Flow Cross Section Area with Guide Wire	Aw	Pi*((IDc/2)^2-(ODw/2)^2)	[m²]
Blood Analog Density	rho_b	1102	[kg/m³]
Blood Analog Conductivity	k_b	0.477	[W/mK]
Blood Analog Viscosity	mu_b	0.01031*exp(-0.035*T)	[Pa*s]
Blood Analog Specific Heat	cp_b	7.1*(T-273.15)+3204.7	[J/kgK]
Catheter Wall Density	rho_c	830	[kg/m³]
Catheter Wall Conductivity	k_c	0.437	[W/mK]
Catheter Wall Specific Heat	cp_c	2800	[J/kgK]
Aorta Temperature	T_inf	311.15	[K]
Lab Temperature	T_lab	293.15	[K]
Inlet Temperature	T_in	Input from Data – Appendix A. Range(285.15-308.15)	[K]
Blood Analog Flow rate	Q_cath	(50, 70, 90, 110, 130)/6E7	[ml/min] -> [m³/s]
Blood Analog Velocity	U_in	Q_cath/A or Q_cath/Aw	[m/s]
Table 1: Input Parameters			

Convection from warm
Aorta to cooling catheter

Heat
Fluid
Domain
Heat
Flux

Free convection to/from la

Mile
Wire

Catheter
Wall

Outlet/Convective Flux
Pressure = 0, Flux = 0

Fig. 2: Geometry values for final model.

Fig. 3: CFD model geometry.

Results

rate, ml/min. A) 6Fr hypothermic, B)

6Fr hypothermic with guide wire.

Fig. 4 Pressure drop, mmHg, as a function of flow rate, ml/min, for four configurations simulated. (A) Isothermal 6Fr catheter, (B) Isothermal 6Fr catheter with guide wire, (C) 6Fr catheter, (D) 6Fr catheter with guide wire.

80 100 120 140
Flow Rate [ml/min]

Fig. 6 Cooling capacity, W, as a function of flow rate, ml/min. A) 6Fr hypothermic, B) 6Fr hypothermic with

guide wire.

Fig. 7 Temperature of ICA and ECA outlet varied blood flow rates.

Conclusions and Future Work

- Mean difference of 5.38% outlet pressure as compared to experimental
- Mean difference of 2.38% temperature change through catheter compared to experimental
- Highest shear stress of 99.5 Pa is below the Hemolysis threshold
- Future work to use an acentric implementation considerations and 3-Dimensional modeling
- Further thorough experimental testing necessary to conclude safety for local hypothermia

References

- Lloyd-Jones, D., Adams, R., and Carnethon, M., 2009, "Heart Disease and Stroke Statistics—2009 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee," Circulation, 119.3, pp. 21–181.
- Leverett, L.B. et al, 1972, "Red Blood Cell Damage By Shear Stress," Biophysical Journal, 12.3, pp. 257 273.

Contact Information

Ryan Sikorski – <u>sikors95@students.rowan.edu</u>

Benjamin Chapman - chapma17@students.rowan.edu

Thomas Merrill – Merrill@rowan.edu

