COMSOL CONFERENCE BOSTON 2012

Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman, R. Gentile, Y. Chen, X. Huang, Y. Xu, N. Orlovskaya

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Objectives

- Build a working model of planar buttonshaped electrolyte supported SOFC
- Run simulations for several electrolyte material configurations
- Study effect of electrolyte on performance

Solid Oxide Fuel Cell (SOFC)

SOFC

- ✓ Solid electrolyte Ceramics
- ✓ Operating temperatures (400°C 1000°C)

Advantages of SOFC

- ✓ High efficiency (>50%, >80% CHP) [1]
- ✓ Fuel flexibility (H_2 , natural gas, biogases, etc.)
- ✓ Combined Heat & Power generation
- ✓ Compatible with gas & steam turbines
- ✓ Power output (W to MW)
- ✓ Relatively higher power density
- \checkmark No water flooding issues, unlike PEMFC

 $H_2 \rightarrow 2H^+ + 2e^-$

 $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$

Picture Source: U.S. Department of Energy website

Types of Planar SOFC

Source: Mark C. Williams, Joseph P. Strakey and Wayne A. Surdoval, U.S. Department of Energy's Solid Oxide Fuel Cells: Technical Advances, Int. J. Appl. Ceram. Technol., 2 (4) 295–300 (2005)

Electrolyte Materials – YSZ, SCSZ

Ideal electrolyte – high ionic conductivity, phase stability, mechanical strength.

SCSZ - $Sc_{0.17}Ce_{0.08}ZrO_2$ YSZ - 8 mol% Y_2O_3 stabilized ZrO_2

• SCSZ electrolyte will be ideal in terms of conductivity.

• SCSZ undergoes phase transition (cubic to rhombohedral) at 300-500 °C.

• YSZ is stable in both oxidizing and reducing environments, maintains cubic structure.

Electrolyte Supported Design

SOFC Material Properties

	Anode – Ni- YSZ	Cathode - LSCF	Electrolyte – YSZ	Electrolyte - SCSZ
Ionic Conductivity [S/m]	1	5.15	4.24 – 4.62	10.58 – 11.93
Electronic Conductivity [S/m]	650000	2300	negligible	negligible
Porosity	40 %	40 %	0	0
Cathode \longrightarrow Electrolyte \longrightarrow			<pre>- LSCF* - YSZ - SCSZ</pre>	
Anode —→	× 400 15	10µm JEOL 7/16 .0kV SEI LM WD 11.0mm 3	→ YSZ → Ni-YSZ	

LSCF* - $(La_{0.6}Sr_{0.4})_{0.95-0.99}Co_{0.2}Fe_{0.8}O_3$

SOFC Geometry: Top View

SOFC Geometry

Anode & Cathode thickness	50 µm
Electrolyte layer thickness	30 µm
Anode & Cathode diameter	10 mm
Electrolyte diameter	20 mm
Gas flow channel height (Anode & Cathode)	1 mm
Gas flow channel diameter (Anode & Cathode)	10 mm

Modeling Methodology

COMSOL:

Electrochemistry – Current distribution & Transport of chemical species

Current distribution	Transport of chemical species
$\nabla \cdot j = Q$	Maxwell-Stefan diffusion model:
$j = \sigma \nabla \Phi$	$\frac{\partial}{\partial t}(\rho\omega_i) + \nabla \cdot (\rho\omega_i u) = \nabla \cdot m_i + R_i$
$\eta_m = \Phi_s - \Phi_l - E_{eq,m}$	$\sum_{r=1}^{Q} \sum_{r=1}^{Q} \sum_{r=1}^{T} \nabla T$
Butler-Volmer equation:	$m_i = \rho \omega_i \sum_{k=1}^{n} D_{ik} d_k + D_i^{T} \frac{1}{T}$
$j = j_o \left[\left(\frac{c}{c_0} \right)_R exp \left\{ \frac{n\alpha F}{RT} \eta \right\} - \left(\frac{c}{c_0} \right)_P exp \left\{ \frac{-n(1-\alpha)F}{RT} \eta \right\} \right]$	<i>k</i> =1
j = i/area [A/m²], current density vector	ρ: mixture density (kg/m³)
Q – source or sink term	u: mass average velocity (m/s)
$\Phi_{\rm I}, \Phi_{\rm s}$ - electrolyte and electrode potential respectfully [V]	ω_i : mass fraction
σ - electrolyte conductivity [S/m]	j _i : mass flux relative to the mass average velocity
η – activation overpotential [V]	$(kg/(m^2s))$
E _{eq,m} - equilibrium potential for the m reaction	R _i : consumption or production rate (kg/(m ³ s))
i_{R} – reference current density	D^{T} : thermal diffusion coefficients (kg/(ms))
n: number of charges transferred	D_i : diffusional driving force acting on species k (1/m)
α : transfer coefficient	\widetilde{D}_{ik} : multicomponent Fick diffusivities (m ² /s)

Modeling Methodology

Fluid mechanics – Brinkman equations (porous media)

Continuity equation:

$$\frac{\partial}{\partial t}(\varepsilon_p \rho) + \nabla \cdot (\rho u) = Q_{br}$$

For incompressible fluids:

 $\rho \nabla \cdot u = Q_{br}$

Momentum equation:

$$\frac{\rho}{\varepsilon_p} \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) \frac{u}{\varepsilon_p} \right) = -\nabla p + \nabla \cdot \left[\frac{1}{\varepsilon_p} \left\{ \mu (\nabla u + (\nabla u)^T) - \frac{2}{3} \mu (\nabla \cdot u) I \right\} \right] - \left(\frac{\mu}{k} + Q_{br} \right) u + F$$

 μ : dynamic viscosity of the fluid (Pa·s)

- u : velocity vector (m/s)
- ρ : fluid density (kg/m³)
- p : pressure (Pa)
- ϵ_p : porosity
- k : permeability of porous medium (m²)
- Q_{br} : mass source or mass sink (m³/s)
- F : volume forces vector (kg/m²s²)

Results

6 - Layered Electrolyte

• Pure SCSZ electrolytes had highest power

Lower ohmic losses

Comparison of YSZ, YSZ-SCSZ Layered, and SCSZ Single Cell Performance

Conclusion & Future Work

- Using SCSZ as the electrolyte material yields the best performance, i.e., the maximum power and current density.
- As the number of electrolyte layers increases, the performance decreases (higher ohmic losses).
- Future work will include incorporating heat transfer physics.
- Compare and match the i-V plot and other experimental results when the SOFCs are produced and tested in the lab.
- Use model to calculate parameters (α, j_o) by curve fitting with experimental results.
- Finite Element Modeling of SOFC electrolyte to find relationship between load, fracture strength and deflection.

Questions? Thank you!

References

[1] Ryan O'Hayre, Suk-Won Cha, Whitney Colella, and Fritz B. Prinz, Fuel Cell Fundamentals, *Wiley*; 2nd edition, 2009.

[2] Conductivity of porous Ni-YSZ Cermets. D.W. Dees, et al.

[3] Nickel coarsening in annealed Ni-8YSZ anode substrates for solid oxide fuel cells. D. Simwonis, et al.

[4] Preparation of Ni-YSZ materials for SOFC anodes by buffer-solution method. Ying Li, el al.

[5] Processing Microstructure Property Correlation of Porous Ni-YSZ Cermets Anode for SOFC Application. S.K. Pratihar, et al.

[6] Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3–d and its effect on structure and conductivity. Mineshige, et al.

[7] High temperature properties of La0.6Sr0.4Co0.8Fe0.2O3-d phase structure and electrical conductivity. Wang, et al.

[8] The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3d as SOFC cathode material. Fan, et al.

[9] Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Ullmann, et al.

[10] Structure and electrical properties of La, _., Sr, Co, _, Fe, O,. Part 2. The system La, _., SrxCo0.2Fe0.803. Tai, et al.