

Modelling of the photo-mechanical response of liquid-crystal elastomers

Giacomo Cerretti

Comsol Conference 10-12 October 2012 Milan

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

APPLICATIONS

Braille touchscreens (Camargo, et al., 2011)

IVF embryos may get a better start in life if they are cultured

Embryo-on-a-chip

Soft motors (Yamada, et al., 2008)

©NewScientist

Embrio-on-a-chip (Hamzelou, 2011)

LIQUID CRYSTAL ELASTOMER (LCE)

Solid crystal

Liquid (Shakhashiri, 2007)

Long polymer chains Nematically order

Molecular orderings:

- Uniaxial a)
- Cholesteric b)
- Twisted **C**)
- Splayed d)

Liquid

crystal

f.

(van Oosten, 2009)

Nematic phase

(Warner & Terentjev, 2007)

TRANS-CIS ISOMERIZATION

When azobenzene (photoisomerizing dye) absorbs a photon, its molecules change from an elongated trans-state to a bent cisstate.

trans-

cis-

macroscopic

Photoisomerization of azobenzene causes the light-induced deformation.

hν

THEORY OF PHOTOBENDING

Light Intensity Profile – Beer Absortpion **Beer-Lambert's law:** 600 $I(x) = I_0 e^{\left(-\frac{x\varphi}{d}\right)}$ Intensity (W/m²) $d = 6\mu m$ 300 d = 1µm 0 2.5 5 x (µm)

THEORY OF PHOTOBENDING

Deformation caused by light absorption:

 $\varepsilon_{light,y}(x) = \varphi P_{\parallel}I(x)cos^{2}\theta + \varphi P_{\perp}I(x)sin^{2}\theta$

Photo-compliance correlates the absorbed light and the induced strain.

Resulting stress:

$$\sigma_{y} = \frac{\varepsilon_{bending} - \varepsilon_{light,y}}{(C_{11}sin^{2}\theta + C_{22}cos^{2}\theta)}$$

Bending radius:

$$r = \frac{\varphi x^3}{6I_0 P d \left(-2d + 2d e^{-\frac{\varphi x}{d}} + \varphi x + \varphi x e^{-\frac{\varphi x}{d}}\right)}$$

HYPERELASTIC MATERIALS

Strain energy density (incompressible version):

$$W = \frac{1}{2}\mu(\hat{I}_1 - 3) + \frac{1}{2}k(J_{el} - 1)^2$$

J_{el} depends on the photoinduced deformation.

Hyperelastic (Bbanerje)

SIMULATION CONSTANTS

Characteristics common to each simulated case:

- -Geometry
- -Material properties
- -Propagation direction of the electric field

PROPERTY	SYMBOL	VALUE	UNIT
Young's modulus parallel	E ₁	1.3	GPa
Young's modulus orthogonal	E⊥	0.6	GPa
Photocompliance parallel	Pı	1.7	cm ² /W
Photocompliance orthogonal	P⊥	-0.7	cm ² /W
Weight fraction of azobenzene (%)	Φ	0.5	Unit less
Absorption length	D	1.6	μm

BEER-LAMBERT'S LAW OF ABSORPTION AND UNIAXIAL ALIGNMENT

BEER-LAMBERT'S LAW OF ABSORPTION AND UNIAXIAL ALIGNMENT

BEER-LAMBERT'S LAW OF ABSORPTION AND SPLAYED ALIGNMENT

Internal splayed alignment:

BEER-LAMBERT'S LAW OF ABSORPTION AND SPLAYED ALIGNMENT

MAXWELL'S EQUATIONS AND UNIAXIAL ALIGNMENT

Intensity through the sample thickness

MAXWELL'S ABSORPTION LAW AND UNIAXIAL ALIGNMENT

BEER-LAMBERT VS MAXWELL

▼ -0.028

Maxwell

Uniaxial

Splayed

IMPLEMENTATION

STEPS

- Mixture into a coated glass cell.
- Heat to 90°C (liquid state).
- Cool down to 63°C (isotropic-nematic transition).
- Photo-polymerization with IR laser, hence solid structure.

Compound	(Sungur, et al., 2007)	Our experiment	
Cross-linker	10mol%	10mol%	-
UV photo-initiator	1mol%	~ 2mol%	
Monomer	89mol%	~ 88mol%	

IMPLEMENTATION

WHAT WE DID

✓ 2D stationary simulations of LCE structures reacting to light stimuli, using two different approaches:

Beer-Lambert's lawMaxwell's equations

Applied to the internal configurations:

- Uniaxial
- Splayed

 Creation procedure by photo-polymerization of uniaxial aligned nematic LC monomers.

IN THE NEXT FUTURE

- Compare the theoretical and the experimental results.
- ✓ 2D time-dependent simulations.
- ✓ 3D stationary and time-dependent simulations.
- ✓ More complex shapes.

ACKNOWLEDGMENTS

- Jean-Christophe Gomez-Lavocat
- Kevin Vynck
- Diederik S. Wiersma
- Hao Zeng
- Camilla Parmeggiani
- Matteo Burresi