

MEMS resonator

Presentation by

Drs. Helger van Halewijn

MEMS resonator overview package

- Resonator size 500 x 700 x 150 micron
- Single silicon on CMOS technology
- High frequency stability, low time jitter, low temperature drift.
- Low motion damping → Q-factor > 40000 (≈ 50 MHz)

Overview of dogbone resonator

Schematic of dogbone resonator

Some parameters studied in COMSOL

- During production in waferfab all dimensions variations can influence the performance
- Q-factor, resonance stability
- 1. Dimensions resonator head
- 2. Anchor loss
- 3. Thickness Si
- 4. Oxidation layer
- Air pressure (vacuum)\
- 6. Thermal losses.
- 7. Viscous Drag
- 8. Electrostatic actuation+fringing
- 9. Mode coupling.

Non linear resonance frequency

Resonance frequency

$$F_{el} = \eta V_{AC} \sin(\omega t) + \frac{V_{DC} \eta x}{g}$$

$$f_{res} = \sqrt{\frac{k}{m} - \frac{V_{DC}^2 \varepsilon_0 wh}{mg^3}}$$

- 1. k spring constant
- 2. m mass system
- 3. V driving voltage
- 4. w width
- 5. h height
- 6. g gap

Q-factor estimation

Reciprocal addition.

$$\frac{1}{Q_{tot}} = \sum_{i=1}^{N} \frac{1}{Q_i}$$

- Anchor loss : Q_{anchor} ≈ 10⁴ -10⁷ dimension
- Thermo-elastic loss Q_{te}≈ 10⁴-10⁶ material
- Surface loss: Q_{sur}≈ 10⁶-10⁸ debris or cracks
- Air damping: Q_{air}≈ 10² 10⁷ vacuum quality, leakage
- Viscous drag Q_{drag} ≈ 10⁵-10⁷ vacuum quality
- All seperate Q factors are estimated with COMSOL.

Overview resonance mode at 56 MHz

Acoustic loss at anchor.

Acoustic loss: Gray domains, PML

- Red arrows indicate PML-layers.
- In PML complete acoustic absorption.
- Blue domains represent normal material properties.
- Eigenfrequency analyses.

Acoustic loss: dimensional variations in the structure.

Capacitances

Present design

•Area of gate within green lines is 41(

Fringe effects, from simple to real system

- Simulated Cap $= 338 \, fF$
- Dominated by drain bottom capacitance

Calculation + Simulation Gate Capacitance

Simple hand calculation Drain $C_1 = 322 \text{ fF}$

- Gate C_2 = 1270 fF and Source C_3 = 18700 fF
- 3. Capacitance C_{12} =22.5 fF and C_{23} =51 fF
- Using mathematical formula

$$C_{gate} = C_{12} + C_{23} + \frac{1}{\frac{1}{C_2} + \frac{1}{C_1 + C_3}}$$

- $C_{\text{gate}} = 1264 \text{ fF}$ Comsol result is $C_{\text{gate Comsol}} = 1266 \text{ fF} \rightarrow \text{OK}$ C_{source} and C_{drain} have similar accuracies.

Capacitance as function of resistivity

- Results from Comsol
- Including effects like air height and substrates thickness
- Resonator operates at 0.3 1.2 Ωcm (equivalent to 80 - 330 S/m)
- 4. Capacitance variation is < 2% in resistivity range
- 5. All simulations are performed with 56 MHz

Asymmetric amplitude under electrical load (V bias)

- At 10 Volt, a harmonic behavior.
- At 80 Volt bias an inharmonic term can easily be seen.
- At 56 MHz, oscillation time is 40 nsec.
- COMSOL time step< 1 nsec

Static stress due to process cycles

- ➤ Static stress at perifery due to curing procedures at various process conditions
- >Stress concentrations in resonator legs.

Q-factor of resonator under Stress

physixfactor

Thermal losses in resonator

Q-factor can be written as:

$$\frac{1}{Q_{therm}} = \frac{E\alpha^2 T_o}{\rho C_p} \frac{\omega \tau}{1 + (\omega \tau)^2}$$

- E = Youngs Modulus [Pa]
- α = expansioncoefficient [1/m]
- T_o = ambient temperature [K]
- ρ = density [kg/m³]
- ω = frequency [rad/s]
- τ = thermal relaxation [s]

Thermal losses in resonator

Temperature fluctuations of about ±10°C, at 56 MHz.

This mechanism is due to material properties.

Thickness Oxidation: Q factor and frequency shift

- Simulation with single layer.
- Mesh is adapted at layers lower than 20 nm.
- Minimum layer thickness 2.5 nm.
- In Comsol, Solid mechanics and shells are combined.

Squeezed film effect including stress

- Q > 40000 at appropriate conditions
- Sliding effect on large surface negligable
- Q-factor is slightly dependant on mesh size of the surface where the film damping is applied.

Overview: Influence of Polyamide Capping above resonator

Permanent frequency shifts: ≈ 20 ppm Well within specs.

Conclusion

- COMSOL paved the way to better understanding to control specs in production. (Q-factor, dimensions, stress and material loss factors)
- MEMS module was used together with the mechanical module.
 - Prestressed Analysis, eigenfrequency
 - Prestressed Analysis, frequency domain.
 - Heat module, Squeezed film and much more.
- Thanks to Dr. H van de Vlist (NXP, Nijmegen)
 Dr. J. van Beek (NXP, Eindhoven)

