

Time Dependent Sliding Performance of a Hyperelastic Seal

Presentation by

Drs. Helger van Halewijn

COMSOL CONFERENCE ROTTERDAM2013

1-11-2013

COMSOL Conference 2013

Introduction

- For an automatic coffee machine a part inside is used for regular maitenance.
- The part consists of an hyper-elastic material and is attached to a metal ring.
- Use has been made of COMSOL, with mechanical module, hyper-elastic material is included in the model.
- Operator should apply a force between 10 14 N.

- Silicone ring can be pulled off the metal ring.
- Two designs should be simulated on force development during time.
- Force should be in the order of 10-14 N.
- Friction coefficient has been tested: $\mu = 2$.

Design1 & 2

1-11-2013

Overview of design 2

Hyper-elastic seal

- Question:
- Simulate the firction force during dismantling of system.
- Complications
 - 1. Stick slip
 - 2. Pre-stressed

1-11-2013

COMSOL Conference 2013

Laboratory tests on friction

a) Slide pack on table: Should withstand sliding a pack of 5 kg on high friction surface (specify)

b) Tests reveal a friction coefficient of 2.

COMSOL Solid mechanics module

- Contact mechanics with friction.
- Hyper-elastic node: Neo-Hookean.
- Study 1:
 - Assembly of system, in order to include the prestress.
- Study 2:
 - Move the elastic seal over the metal part, with friction.
 - Time dependant study.

Material data

DATA TABLE FOR: Polymers: Elastomers: Silicone Rubber

Mechanic	al Properties			
	Quantity	Value	Unit	
	Young's modulus	1 - 5	MPa	
	Tensile strength	5 - 8	MPa	
	Elongation	200 - 800	%	
Physical F	Properties			
	Quantity	Value	Unit	
	Thermal expansion	8.1 - 8.1	e-6/K	
	Thermal conductivity	0.22 - 0.22	W/m.K	
	Glass temperature	-120123	°C	
	Service temperature	-70 - 250	°C	
	Density	1250 - 1250	kg/m ³	
	Resistivity	1e+19 - 1e+21	Ohm.mm ² /m	
	Dielectric loss factor	0.001 - 0.01		
General				

Remarks

Silicones are not or difficult to bond with an adhesive. Bonding is only possible with cyano-acrylaat after the application of a primer. With cyano-acrylaat it is not possible to bond with glass, stone and concrete.

SAMPLE: ELASTOMERS

4	-	-	2		5
	-		-21	UI	13

Preparation of simulation. Assembling Design 1

1-11-2013

Stress development design 2

Some aspects of the mesh, design 1

🛞 Mesh	
Geometric Entity Selection	n
Geometric entity level: Er	ntire geometry 🔹
Statistics	
Complete mesh	
Element type: All elemen	ts 🔹
Triangular elements: 5415 Edge elements: 541 Vertex elements: 87	
– Domain element statisti	
Number of elements: Minimum element quality Average element quality: Element area ratio: Mesh area: Maximum growth rate: Average growth rate:	5415 :0.6872 0.9492 1.275E-4 15.7 mm ² 2.328 1.352
Element Quality Histogram	n
	,

Final mesh properties.

COMSOL Conference 2013

Some remarks on simulation

- 2D axi-symmetric simulation.
- Mesh should be fine at contact points.
- Use small time steps, especially when stick slip occurs.
- Simulation time of 1 run approx. 1.5 hours
 - Can be optimised (Get the job done!)

Assembly Design 1

1-11-2013

COMSOL Conference 2013

Peel off, Design 1

1-11-2013

Design 1

1-11-2013

Force on seal during peel off. Design 1 & 2

- Left design 1, Peak force can be seen.(μ=0.4!)
- Right design 2, Peak stress around 11- 14 N.

An overview of the two simulations

Solver time	Design 1	Design 2
Study 1: Assembly	52 sec	60 sec
Study 2: Pull off	70 min	87 min
	75 kDOF Axi symmetric	95 kDOF Axi symmetric
Mesh size		

Some remarks

- With the friction coefficient of 2 (Laboratory measurements), the predicted maximum value of 11- 14N was measured in practice.
- A slight modification of the rounding of the metal ring was suggested for a smoother performance.
- Hyper-elastic module works well.
- Stick slip simulations are delicate, and take some time to study the behavior and tuning to get a stable solution.

I would like to thank the support and measurements done by People Creating Value.

People Creating Value B.V. Oldenzaalsestraat 125 7514 DP Enschede The Netherlands T +31 (0) 53 434 26 24

E info@pcvgroup.com

People Creating Value B.V. Pastorielaan 4^H 9244 CA Beetsterzwaag The Netherlands T +31 (0) 53 434 26 24

People Creating Value B.V. Altenberger-Dom-Str. 20 D 51519 Odenthal Germany T +49 (0) 2202 97125

www.peoplecreatingvalue.com

People creating value through the implementation of new ideas

- Thanks to the People Creating Value
- Thanks for your attention.

