

Simulation of rarefied gasflow in the KATRIN tritium source

Laura Kuckert COMSOL Conference Rotterdam 24.10.2013

Karlsruhe Institute of Technology (KIT), Institute for Nuklear Physics (IK)

COMSOL CONFERENCE ROTTERDAM2013

1. The KATRIN Experiment – an introduction 1.1 Tritium Source WGTS

2.1 General description of flow regimes in the WGTS2.2 Gasflow simulations of Felix Sharipov

- 3. The WGTS in COMSOL
 - 4.1 Geometry
 - 4.2 Results
- 4. Sharipov vs. COMSOL simulation
- 5. Conclusion

1.THE KATRIN EXPERIMENT -A (SHORT) INTRODUCTION

- "Who" is KATRIN? Karlsruhe Tritium Neutrino Experiment
- Measurement of absolute neutrino mass through beta deca of T₂ $T_2 \rightarrow {}^3He + T + e + \overleftarrow{\upsilon}_e$
- Measurement of electron spectrum with MAC-E Filter (*Magnetic adiabatic Collimation with Electrostatic Filter*)
- Limit Today: $m_v < 3eV \rightarrow possible KATRIN limit: m_<200meV$
- Higher sensitivity through : larger experiment, higher luminosity, lower background, reduction of systematic errors (Gasdynamics...) precision of simulated integrated density <0.2%!!!!!

1.1 Tritium Source WGTS (Windowless Gaseous Tritium Source)

Fig. 1.1.2 WGTS scheme

- 10 m stainless steel tube, diameter 90mm
- High Temperature stability at 27-30K
- T₂ injection with pressure of 0.336 Pa through small orifices
- Avoid Tritium in spectrometer $\rightarrow 10^{14}$ pressure reduction factor
- Reduction factor WGTS end: 10³

2. KATRIN GASDYNAMIC SIMULATION – A STATUS REPORT

2.1 General description of flow regimes in the WGTS

$$\delta = \frac{R \cdot p(z)}{\mu v_m}$$

 δ = Rarefraction parameter

At Injection:

 $p \approx 0.335 \text{ Pa} \rightarrow \delta \approx 23.4$ Continuum, Navier Stokes equations

- After 1st pump: $p \approx 0.003 \text{ Pa} \rightarrow \delta \approx 0.2$ Free molecular, collisions neglectable
- In tube and 1st pump port:

0.02 < δ < 23 Collision term not neglectable (transition region), Boltzmann equation

2.2 Gasflow simulations of Felix Sharipov

- Numerical calculations based on Boltzmann equation (BE)
- Assumes BGK equation with S-model modification
- Gas surface interaction included by Cercignani–Lampis scattering kernel
- Geometry and assumptions systematicly improved:
 - Exit pressure $\neq 0$
 - Inlet and end effects
 - Longitudinal and radial temperature variation
 - 2D calculations (with temperature gradient)
 - To be continued with calculation of gas flow in first pump port...

- $R/I = 0.0045 \rightarrow \text{first 1D calculation with } p_{ex} = 0, T = \text{const.}$
- Reduced flow rate G and local reduced flow rate G_p connected:

- $G_{p}(\delta)$'s from kinetic BE, calculate δ -values numericaly
- Interpolation formula for $\delta(z)$ for KATRIN source simulation
- Next steps: T-profile and p_{ex}≠0 considered
 Inlet and end effects considered

3D calculation :

- Same approach for solving BE as in 1D calculations
- Large computational effort \rightarrow pseudo 3D-profil: 2D calculations (include ΔT but no end effects) for 25 δ -values
- Combine with $\delta(z)$ from 1D calculation \rightarrow 3D profile

3. THE WGTS IN COMSOL

3.1 2D Geometry

 Simplified tube for comparison 2. As 1. with exact inlet configuation: with 1st Sharipov data:
Inlet Total vacuum
5m

3. Exact WGTS geometry:

Transitional Flow Parameter: $P_{in} = 0.3368 \text{ Pa}, M = 6.003 \text{ kg/mol}$ $T = 30K = \text{const } !!!, \mu = 2.245*10^{-6} \text{ Pa*s}$

Fig. 3.1. Number density in injection region

4. Sharipov vs. COMSOL simulation

a) Comparison COMSOL vs Sharipov data without end effect

b) Comparison COMSOL vs Sharipov data with end effect

5. CONCLUSION

 Different 2D models of the WGTS using Transitional flow interface had been simulated with COMSOL

- Comparison of average 2D results with 1D Sharipov calculation:
 - Deviations in density of end region (up to 8%)
 - Disagreement in column density (for z=0) 2.5%, KATRIN needs N_{col} precision of 0.2%...
 - Disagreement in pressure distribution inlet region
- No ΔT and accomodation coefficient in COMSOL simulation
- ToDo: improve 2D simulation (all pump ports, mesh size), simulate 3D geometry, find correct inlet pressure, simulate test experiment

Thank you for your attention...