2014 COMSOL Conference, Boston, MA October 7-9, 2014

# Finite Element Analysis of Transient Ballistic-Diffusive Heat Transfer in Two-Dimensional Structures



#### <u>Sina Hamian</u><sup>1</sup>, Toru Yamada<sup>2</sup>, Mohammad Faghri<sup>3</sup>, and Keunhan Park<sup>1,</sup>

University of Utah, Salt Lake City, UT, USA
 Lund University, Lund, Sweden
 University of Rhode Island, Kingston, RI, USA





### Motivation

- Size of electronic devices gets smaller and smaller such as in CPUs and transistors
- Sub-continuum heat conduction is important
- Different numerical works have been done in modeling ballistic-diffusive heat transfer
- Not available for public in any commercial package



An SEM image of an upright-type double-gate MOS transistor (Source: AIST)



Singh et al. J. of Heat Transfer, 2011



### Heat transfer equations

Fourier equation

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

- Continuum medium
- Diffusive thermal transport (Parabolic equation)
- Cannot accurately predict sub-continuum heat transfer

- Boltzmann transport equation (BTE)
  - Based on energy carriers distribution (statistical base)
  - Complicated scattering term
  - Relaxation time approximation

$$\frac{\partial f}{\partial t} + \mathbf{v}_g \cdot \nabla f = \frac{f_0 - f}{\tau}$$

- f frequency dependent distribution function
- $\mathbf{v}_{g}$  group velocity of energy carriers
  - $f_0$  equilibrium distribution function
- au effective relaxation time



### **Governing equation**

BTE for phonon energy density

$$\frac{\partial e''}{\partial t} + \nabla \cdot (v_g \hat{\mathbf{s}} e'') = \frac{e_0'' - e''}{\tau}$$

$$e''(\mathbf{r}, \hat{\mathbf{s}}, t) = \sum_{p} \left( \int_{0}^{\omega_{p}} D_{p}(\omega) f \hbar \omega d\omega \right)$$
Directional phonon energy density  
$$e''_{0}(\mathbf{r}, t) = \frac{1}{4\pi} \int_{4\pi} e''(\mathbf{r}, \hat{\mathbf{s}}, t) d\Omega$$
Equilibrium phonon energy density

 $v_{g}$  Phonon group velocity

### Knudsen number $Kn = \Lambda / L$

For a constant phonon mean free path: Smaller domain length ightarrow Larger Kn



#### Nondimensional 2-D BTE + DOM

$$\frac{1}{\mathrm{Kn}} \frac{\partial e_{n,m}''}{\partial t^*} + \mu_n \frac{\partial e_{n,m}''}{\partial x^*} + \eta_{n,m} \frac{\partial e_{n,m}''}{\partial y^*} = \frac{e_0'' - e_{n,m}''}{\mathrm{Kn}}$$
$$\mu_n = \cos \theta_n \qquad t^* = t/\tau$$
$$\pi_{n,m} = \sin \theta_n \cos \varphi_m \qquad y^* = y/\mathrm{H}$$



#### **Discrete Ordinate Method (DOM)**

$$e_0''(\mathbf{r},t) = \frac{1}{4\pi} \int_{4\pi} e''(\mathbf{r},\hat{\mathbf{s}},t) d\Omega$$
$$e_0''(t^*, x^*, y^*) = \frac{2}{4\pi} \sum_n \sum_m e_{n,m}''(t^*, x^*, y^*) w_n w_m'$$





### Validation (1-D thin film)



[1] G. Chen, Nanoscale Energy Transport and Conversion,Oxford University Press, 2005.



#### Results





## Ray effect



Diffusive



#### **Transient solution**



- COMSOL can calculate sub-continuum phonon heat transport.
- FEA-DOM combination is used in COMSOL for ballistic-diffusive heat transfer.
- Modeling nanoscale heat transfer is easily accessible.

## Acknowledgement

This work was supported by the National Research Foundation Grant funded by the Korean Government (NRF-2011-220-D00014) and the National Science Foundation (CBET-1067441). SH and KP also acknowledge the startup support at the University of Utah, including the computation at the Center for High-Performance Computing (CHPC).

#### Recently accepted in: International Journal of Heat and Mass Transfer

Doi: 10.1016/j.ijheatmasstransfer.2014.09.073





### Introduction

Application:

Thermomechanical data writing/reading Thermal performance of extremely miniaturized electronic devices Thermal etching Thermal deposition



Pires et al., Science., 328 (2010)



Lee et al., Nano Lett., 10 (2010)



### Heat transfer equations

• Fourier equation

Energy conservation + Fourier's heat flux approximation Used for heat conduction simulation for the last 2 centuries Heat carriers travel with an infinite speed

$$\frac{\partial T}{\partial t} = \alpha \nabla^2 T$$

Hyperbolic wave equation

$$\frac{1}{C^2} \frac{\partial^2 u}{\partial t^2} = \nabla^2 u$$

• Hyperbolic heat equation (Cattaneo equation) Finite speed of heat carriers  $C^2 = \frac{\alpha}{\tau}$ Good for short time scales but not for short spatial scale

$$\tau \frac{\partial^2 T}{\partial t^2} + \frac{\partial T}{\partial t} = \alpha \nabla^2 T$$



### Fourier and hyperbolic heat equations

Joshi and Majumdar, Journal of Applied Physics, 1993



Transient Fourier and Hyperbolic heat equation

Steady state Fourier and Hyperbolic heat equation



### **Boltzmann Transport Equation (BTE)**

• Boltzmann transport equation (BTE)

BTE has a statistical base based on energy carriers distribution

$$\frac{\partial f}{\partial t} + \mathbf{v}_g \cdot \nabla f = \left[\frac{\partial f}{\partial t}\right]_{scattering}$$

- f frequency dependent distribution function
- $\mathbf{v}_{g}$  group velocity of energy carriers (phonons)

• Relaxation time approximation

$$\left[\frac{\partial f}{\partial t}\right]_{scattering} = \frac{f_0 - f}{\tau}$$

- $f_0$  equilibrium Bose-Einstein distribution
- au effective relaxation time

$$e_0''(t^*, x^*, y^*) = \frac{2}{4\pi} \sum_n \sum_m e_{n,m}''(t^*, x^*, y^*) w_n w_m'$$

$$\sum_{n}\sum_{m}w_{n}w_{m}'=2\pi$$

$$T(t^*, x^*, y^*) = \frac{4\pi e_0''(t^*, x^*, y^*)}{C} = \frac{2}{C} \sum_n \sum_m e_{n,m}''(t^*, x^*, y^*) w_n w_m'$$

$$q_x''(t^*, x^*, y^*) = 2v_g \sum_n \sum_m e_{n,m}''(t^*, x^*, y^*) \mu_n w_n w_m'$$
$$q_y''(t^*, x^*, y^*) = 2v_g \sum_n \sum_m e_{n,m}''(t^*, x^*, y^*) \eta_{n,m} w_n w_m'$$

$$e''(\mathbf{r}_b, \mathbf{s}) = e_0''(\mathbf{r}_b) = \frac{CT_b}{4\pi}$$



### **COMSOL** model



17
Department of Mechanical Engineering
Collige of Engineering THE UNIVERSITY OF UTAH

## Ray effect





#### COMSOL model

| 19 BTE_RongguiKn001.mph - COMSOL Multiphysics                                                                                               |                                                                                                                                                               |                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| File Edit Windows Options Tools Help                                                                                                        |                                                                                                                                                               |                                                                |
| 🗅 🛅 📂 📮 🗠 🖓 🔽 📕 🖬 Model 1 × 🗞 ×   P <sub>1</sub> a= × f(x) ×   🏭 🕞   🎼 🏥 🔯   PDE × 🎉   🎬 Mesh 1 ×   = Study 1 × ∞   2D Plot Group 257 × 🌉 × |                                                                                                                                                               |                                                                |
| 🚍 Definitions 🖄 Geometry 🏨 Physics 🛕 Mesh \infty Study 📳 Results 💭 🗢 🕞 V 🛱 V                                                                |                                                                                                                                                               |                                                                |
| T Model Builder                                                                                                                             | Coefficient Form PDE                                                                                                                                          | Caphics                                                        |
|                                                                                                                                             | Domain Selection                                                                                                                                              | ^ Q, Q, £, ⊕ ⊞   ↓ -   Ø ⊆ ■ ⊖ ⊖ ⋈   ≝ ≝ ℝ 阪   ∞ ⊡ ⊠ 3 C   Ø 量 |
| V STE_RongguiKn001.mph (root)                                                                                                               | Selection: All domains                                                                                                                                        |                                                                |
| Global Definitions                                                                                                                          |                                                                                                                                                               | NALTINGUES V                                                   |
| V Model 1 (mod1)                                                                                                                            |                                                                                                                                                               | 0.9                                                            |
| Definitions                                                                                                                                 | Active 🗐 —                                                                                                                                                    | 0.8-                                                           |
| Geometry 1                                                                                                                                  |                                                                                                                                                               |                                                                |
| Materials                                                                                                                                   |                                                                                                                                                               | 0.7                                                            |
|                                                                                                                                             | (Ē)                                                                                                                                                           |                                                                |
| Coefficient Form PDE 1                                                                                                                      |                                                                                                                                                               | 0.6                                                            |
| Disitial Values 1                                                                                                                           | Override and Contribution                                                                                                                                     |                                                                |
| Dirichlet Boundary Condition 1                                                                                                              | ▼ Equation                                                                                                                                                    | 0.5                                                            |
| Au PDF 2 (c2)                                                                                                                               |                                                                                                                                                               | 0.4                                                            |
| ↓ Δu PDE 3 (c3)                                                                                                                             | snow equation assuming:                                                                                                                                       |                                                                |
| ▷ Δu PDE 4 (c4)                                                                                                                             | Study 1, Stationary                                                                                                                                           | 0.3                                                            |
| Δυ PDE 5 (c5)                                                                                                                               |                                                                                                                                                               |                                                                |
| DE 6 (c6)                                                                                                                                   | $e_{a}\frac{\partial u}{\partial t^{2}} + d_{a}\frac{\partial u}{\partial t} + \nabla \cdot (-c\nabla u - \alpha u + \gamma) + \beta \cdot \nabla u + au = f$ | 0.2                                                            |
| ▷ Δ <sub>U</sub> PDE 7 (c7)                                                                                                                 | $\nabla = \left[\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right]$                                                                              |                                                                |
| DE 8 (c8)                                                                                                                                   | · dx'dy'                                                                                                                                                      | 0.1                                                            |
| ∆u PDE 9 (c9)                                                                                                                               | ▼ Diffusion Coefficient                                                                                                                                       |                                                                |
| D ∆u PDE 10 (c10)                                                                                                                           |                                                                                                                                                               |                                                                |
| ▷ ∆u PDE 11 (c11)                                                                                                                           |                                                                                                                                                               | -0.1                                                           |
| Δυ PDE 12 (c12)                                                                                                                             | c 1                                                                                                                                                           |                                                                |
| ν Δυ PDE 13 (C13)                                                                                                                           | Isotropic                                                                                                                                                     | -0.2                                                           |
| Au PDE 15 (c15)                                                                                                                             |                                                                                                                                                               |                                                                |
| Au PDE 16 (c16)                                                                                                                             | ▼ Absorption Coefficient                                                                                                                                      |                                                                |
| ▶ Au PDE 17 (c17)                                                                                                                           |                                                                                                                                                               | -0.4                                                           |
| Δυ PDE 18 (c18)                                                                                                                             | ə 1 1/m²                                                                                                                                                      |                                                                |
| ▷ Δυ PDE 19 (c19)                                                                                                                           |                                                                                                                                                               | -0.5                                                           |
| ▷ Δυ PDE 20 (c20)                                                                                                                           | ▼ Source Term                                                                                                                                                 |                                                                |
| ▷ Δu PDE 21 (c21)                                                                                                                           |                                                                                                                                                               | -4.6                                                           |
| DE 22 (c22)                                                                                                                                 | f (0.007*(0.1590*u+0.3493*u2+0.4928*u3+0.5697*u4+0.5697*u5+0.4928*u6+0.3493*u7+) 1/m <sup>2</sup>                                                             | -0.7                                                           |
| Au PDE 23 (c23)                                                                                                                             |                                                                                                                                                               |                                                                |
| D ∆u PDE 24 (c24)                                                                                                                           |                                                                                                                                                               | -0.8                                                           |
| D ∆u PDE 25 (c25)                                                                                                                           |                                                                                                                                                               |                                                                |
| V AU PDE 26 (C26)                                                                                                                           | ea 0 s <sup>2</sup> /m <sup>2</sup>                                                                                                                           | -0.9                                                           |
| Au PDE 28 (c28)                                                                                                                             |                                                                                                                                                               |                                                                |
| Au PDE 29 (c29)                                                                                                                             | → Damping or Mass Coefficient                                                                                                                                 | -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1                     |
| Au PDE 30 (c30)                                                                                                                             |                                                                                                                                                               | 🖸 🔯 Messages 😫 💭 Progress 🛄 Log 🏢 Table                        |
| ∆u PDE 31 (c31)                                                                                                                             | d <sub>a</sub> 1 s/m <sup>2</sup>                                                                                                                             |                                                                |
| ▷ Δ <sub>U</sub> PDE 32 (c32)                                                                                                               |                                                                                                                                                               |                                                                |
| DE 33 (c33)                                                                                                                                 | Conservative Flux Convection Coefficient                                                                                                                      | Opened file: BTE RongguiKn001.mph                              |
| D ∆u PDE 34 (c34)                                                                                                                           | ▼ Convection Coefficient                                                                                                                                      |                                                                |
| D ∆u PDE 35 (c35)                                                                                                                           |                                                                                                                                                               |                                                                |
| P ∆u PDE 36 (c36)                                                                                                                           | -0.9973*Kn x                                                                                                                                                  |                                                                |
| P Δυ PDE 37 (c37)                                                                                                                           | β 0.0738*Kn y 1/m                                                                                                                                             |                                                                |
| V AU PDE 38 (C38)                                                                                                                           | 1                                                                                                                                                             |                                                                |
| 1.01 GB I 6.46 GB                                                                                                                           |                                                                                                                                                               |                                                                |
|                                                                                                                                             |                                                                                                                                                               |                                                                |
|                                                                                                                                             |                                                                                                                                                               | 19                                                             |

