Modeling Flow and Deformation during Salt-Assisted Puffing of Single Rice Kernels

Tushar Gulati Cornell University

COMSOL CONFERENCE 2014 BOSTON

- Quick process and a complex interplay of mass, momentum and energy transport with Large Deformations
- Rapid evaporation of water to vapor
- Phase Transition from Glassy (brittle) to Rubbery (ductile) state
- Large volumetric expansion of the kernel due to Gas Pressure generation and Phase Transition
- Large Plastic (inelastic) deformation of the material

Transport Process in Deformable Porous Media

Multiphase, multicomponent transport Poromechanics, phase dependent properties

 $\mathbf{n}_{i,G} = \mathbf{n}_{i,S} + c_i \mathbf{v}_{s,G}$

Transport Process Porous Media^{1,2,3}

¹Whitaker (1997) ²Ni H et al., (1999) ³Halder A et al., (2007)

Transport Process Porous Media

Momentum Conservation

Darcy Law

$$\frac{\partial c_g}{\partial t} + \nabla \cdot (\mathbf{n}_{g,G}) = I \qquad \mathbf{n}_{g,g} = -\rho_g \frac{k_g k_{r,g}}{\mu_g} \nabla P \qquad \mathbf{v}_i = -\frac{k_i k_{r,i}}{\mu_i} \nabla P$$

$$\lim_{\mathbf{h}_g \to \mathbf{h}_g} \mathbf{v}_i = -\frac{\mu_i}{\mu_i} \nabla P$$

$$\lim_{\mathbf{h}_g \to \mathbf{h}_g} \mathbf{v}_i = -\frac{\mu_i}{\mu_i} \nabla P$$

$$\lim_{\mathbf{h}_g \to \mathbf{h}_g} \mathbf{v}_i = -\frac{\mu_i}{\mu_i} \nabla P$$

Mass Conservation

Energy Conservation

Phase Change

Evaporation-Condensation

$$\dot{I} = K \frac{M_{\nu}}{RT} \left(p_{\nu,eq} - p_{\nu} \right)$$

Non-Equilibrium Formulation

Deformation in Porous Media: Poromechanics^{1,2,3}

¹Perre & May (2001) ²Kowalski (2000) ³Coussy (2004)

Phase Transition

Textural Attributes

Porosity & Bulk Density

Volume Shrinkage/Expansion

Stress Cracking

Puffing: Modeling Framework

• Salt-Assisted Puffing carried out at 200°C for 15s

Multiphase transport (Gas Pressure Driven) Large Deformations (Elastic, Perfectly-Plastic Material)

Prediction	of Key Qualit	y Attributes
------------	---------------	--------------

Porosity Microstructure Volumetric Expansion

- Oriving force of deformation:
 - > Expansion is driven by gas pressure gradients only, shrinkage due to moisture loss is neglected

Puffing: Mechanical Properties

Model implementation

Numerical Solution using COMSOL 4.3b

> A highly-non linear coupled multi-physics problem, convergence issues

Mesh inverts and leads to convergence problems

- > Large strain plasticity adds additional level of numerical challenge,
- > Need to play extensively with default solver features of the software

Puffing: Model validation

Puffing: Actual and Simulated Expansion

Puffing: Porosity and Microstructure Development

Puffing: Simulated Process

Temperature

Bulk Modulus

Pressure

Plastic Deformation

Puffing: Expansion Ratio as a Quality Parameter

Salt preconditioning is done to increase volumetric expansion

Addition of salt:

- > Decreases the Glass Transition Temperature of the material
- > Increases expansion ratio by at least 15% (found experimentally)

Puffing: Summary & Potential Applications

- **Physics: High temperatures** cause **rapid evaporation** of water generating **large gas pressures** within and, Rubbery-Glassy Phase Transition of the material.
- Key Observations: Rice puffs from the tip where it Glass Transitions. The expansion front moves inwards eventually causing the entire kernel to puff. Pore formation follows a similar trend
- Process Optimization: Salt preconditioning increases the expansion ratio of the kernel
- Model Extension: Other puffing type processes using hot oil, gun puffing, extrusion and microwave puffing. Starch based-foamed plastics in the chemical process industry

Acknowledgements

- USDA Grants
- Prof. Ashim Datta
- Prof. Alan Zehnder
- Prof. Shefford Baker
- Alex Warning
- Huacheng Zhu
- Peyman Taherkhani
- Porawon Nitjarunkul
- Or. Swati Kadam

Thank You

