

Carlos K. C. Arruda, Anny A. Silveira, Fernando C. Dart Departamento de Linhas e Estações COMSOL CONFERENCE 2014 CURITIBA

- Unknown issues
- Experimental lines costly
- **Unconventional TLs**
- Project optimization for existing voltage levels
- Recapacitation/ uprating
- High Surge Impedance Line HSIL (a.k.a. *Linha de potência natural elevada LPNE*)

etrohras

Cepel

Some project criteria

- Electric field at conductor surface Corona effect
- Current density Skin effect
- Electromagnetic field at ground level Environmental restrictions
- Impedance and admittance (balanced and unbalanced) – circuit model: load flow, fault calculations etc.

Analytical models

Introduction HSIL test line - FURNAS

Centro de Pesquisas de Energia Elétrica - CEPEL

COMSOL CONFERENCE 2014 CURITIBA

Compare some aspects regarding TL design using analytical models and Finite Elements (COMSOL)

 Advantagens and limitations shall be discussed for both methods

Practical aspects in high voltage transmission lines

Governing equations

- Basic circuit relations
 - $\begin{bmatrix} \Delta v_1 \\ \Delta v_2 \\ \Delta v_3 \end{bmatrix} = \begin{bmatrix} z_{11} & z_{12} & z_{13} \\ z_{21} & z_{22} & z_{23} \\ z_{31} & z_{32} & z_{33} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} \qquad \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \end{bmatrix}$ $\frac{dv}{dx} = \mathbf{Z} \cdot \mathbf{i} = (\mathbf{R} + j\omega \mathbf{L})\mathbf{i} \qquad \frac{di}{dx} = j\omega \mathbf{C} \cdot \mathbf{v} \qquad \mathbf{q} = \mathbf{P}^{-1} \cdot \mathbf{v} = \mathbf{C} \cdot \mathbf{v}$
- Skin effect

$$Z_{i} = \frac{j\omega\mu}{2\pi r_{0}} \frac{K_{1}(\rho_{0})I_{0}(\rho_{1}) + K_{0}(\rho_{1})I_{1}(\rho_{0})}{I_{1}(\rho_{1})K_{1}(\rho_{0}) - I_{1}(\rho_{0})K_{1}(\rho_{1})}$$

• Electric field

$$E_{kx} = \frac{q_{rx} + jq_{ix}}{2\pi\epsilon} \begin{bmatrix} x_m \\ x_m^2 + (h_k - h_m)^2 \\ -\frac{x_m}{x_m^2 + (h_k + h_m)^2} \end{bmatrix} \qquad E_{ky} = \frac{q_{rx} + jq_{ix}}{2\pi\epsilon} \begin{bmatrix} h_m - h_k \\ x_m^2 + (h_k - h_m)^2 \\ -\frac{h_m + h_k}{x_m^2 + (h_k + h_m)^2} \end{bmatrix} \qquad E_x = \sum_k E_{kx} = E_{rx} + jE_{ix}$$

COMSOL CONFERENCE 2014 CURITIBA

Proposed test case

Nominal voltage level	500 kV, phase-phase RMS						
Current per phase	1000 A						
Conductor	Phase: ACSR Tern						
	Ground wire: EHS 3/8"						
Number of conductors	6 per phase,						
	2 ground wires						
Bundle radius (ellipsis major/ minor axis)	Outer phases: 1.4/ 1.12 m						
	Center phase: 0.6/ 0.48						
	m						
Bundle asymmetry	0.8						
(relation between							
Height at tower	Outer phases: 29 m						
	Center phase: 26.5 m						
	Ground wires: 39 m						
Sag at nominal	Phases: 12.58 m						
conditions	Ground wire: 7.64 m						
Distance between	6.5 m						
phases (bundle							

Test case profile, conductor positions at tower (color) and mid-span (gray)

Modeling

Some peculiarities:

- 2D approximation
 - Valid for studies at midspan → higher electric fields at conductors and ground level
- Three phase system
 - Simultaneous interaction
 - · "Three leg" coil in magnetic field model?
 - · Unbalanced system \rightarrow return to ground
- ACSR cables (aluminum wires with steel core)
 - · Magnetic interaction, relevant for Joule losses
- Domain dimensions
 - From 1 cm (cable diameter) up to 100 m (cable height or right-ofway width) or 100 km (line length)
 - Infinite domain consideration
- Ground resistivity
 - Infinite domain with current return?

Modeling considerations Three-phase unbalanced line/ single phase

Modeling considerations Domain-circuit interaction

A TL, by definition, connects two systems

- The "ground node" is not in the same potential, like case (b) – numerical methods demands exactly one reference node
- Case (a) is acceptable for short lines or balanced system (single phase reduction)
- Proposed case (c) should consider correctly the earth return (good for fault simulations) – not supported in Comsol

Modeling COMSOL Configuration

- Infinite elements (open domain)
- Single coil representing each current injection, grouped by bundles,
- A return coil for ground, for unbalanced loads,
- Separation of real ground bounded by a ideal ground underneath a infinite element layer,
- Representation of steel core of ACSR cables for proper skin effect observation,
- Meshing of cables and ground surface, layer refinement in one conductor.
- Using the same geometry, it's possible to build a number of meshes, specific for each study

Study outputs

- Admittance matrix ("electrostatics", frequency domain)
- Electric field at conductor ("electrostatics", frequency domain)
- Impedance (magnetic fields, frequency domain)
- EM fields at ground level (magnetic fields and electrostatics, time dependent and frequency domain)

Meshing

2D plot of skin effect in ACSR cable (current density, A/mm²), 100 kHz

Results Skin effect

100 50 20 5 5 10⁻¹ 10⁰ 10¹ 10² 10³ 10⁴ 10⁵ 10⁶ Frequency [Hz]

Current density profile at phase conductor for selected frequencies [A/mm²]

Equivalent resistance for an ACSR cable – frequency sweep $[\Omega/m]$

17.5816	-5.6852	-2.8138	17.33746	-5.79948	-3.18350
-5.6852	16.4572	-5.6852	-5.79948	16.48686	-5.79950
-2.8138	-5.6852	17.5816	-3.18350	-5.79950	17.33751

Capacitance Matrix, analytic [nF/km]

Capacitance Matrix, FEM [nF/km]

Results Electric field at Ground Level

level [kV/m], at points below each phase

Electric field profile near ground [kV/m]

Results EM Field near conductors

Electric field intensity at outer phase [kV/cm]

Results EM Field near conductors

2014 CURITIBA

Electric field around outer phase conductors (filled line) and center phase (dashed line)

Results Magnetic Field

Magnetic lines for 60 Hz current with 10 Ω /m soil, maximum at center phase

Magnetic lines for 100 kHz current, same conditions

Conclusions

- Meshing is a relevant aspect, which must be made with caution. The "boundary layers" option is of great value for observe the skin effect.
- The work arises some questions regarding established premises in both sides, FEM and analytical, such the homogeneous ground in unbalanced systems and the inductance calculation.
- The authors suggests further development in the circuit models inside COMSOL:
 - Two uncoupled circuits (no common ground/ zero port) connected through a 3d model with ports
 - · 2d model, but with distinguishable in/ out port

etrohras

Cepel

- Precise modeling of ACSR conductor, including each wire, in 2D and 3D, using helicoidal objects, to investigate the "transformer effect",
- Interaction with two independent circuit models and a FEM domain, including considerations about "remote ground" reference,
- Extrusion of 2D solution for a 3D model, as an analogy of "3D revolve",
- 2D magnetic model with assumptions of "in" and "out" terminals for a same domain.

Cepel

References

- 1. Guimarães, R. P., Miller, M. D. Brazilian Transmission System: A Race for the Future. *Electrical Transmission and Substation Structures*, 401-415 (2012).
- 2. Régis Jr, O., et al. Expanded Bundle Technique: The Application of HSIL TL Concept to Increase the Capacity of Overhead Lines, *CIGRÉ Paper* 22-207 (1998).
- 3. Araújo, M. C., et al. Eletronorte and the Challenge of Long-distance Transmission in Brazil, *CIGRÉ Paper* B2-111 (2008).
- 4. Stevenson, W. D. Elements of Power System Analysis, 4th Ed. (1982).
- 5. EPRI AC Transmission Line Reference Book 200 kV and Above, 3rd Ed., EPRI, Palo Alto, CA (2005).
- 6. Carson, J. R., et al. Wave Propagation in Overhead Wires with Ground Return, *Bell System Technical Journal 5*, 539-554 (1926).
- 7. Deri, A., Tevan, G., Semlyen, A. and Castanheira, A. The Complex Ground Return Plane – a Simplified Model for Homogeneous and Multi-layer Earth Return, *IEEE Transactions on Power Apparatus and Systems*, 8 3686-3693 (1981).
- 8. Lorenzen, H., Timmerberg, J., Mylvaganam, S. Calculation of Cable Parameters for Different Cable Shapes, *COMSOL Conference*, Hannover (2008).
- 9. Pelster, W. Ampacity simulation of a high voltage cable to connecting off shore wind farms, *COMSOL Conference*, Milan (2012).
- 10. EL-Fouly, T., *et al.* Power Transmission Lines Generated Electric and Magnetic Fields Calculations, *COMSOL Multiphysics User's Conference*, Boston (2005).

Thank you.

Contact: carloska@cepel.br +55-21-2598-6462

