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Introduction: The primary motivation of this work was to develop mathematical and

numerical models for fluid flow in porous media with fractal properties, because it has been

observed that the pressure from well tests of certain naturally fractured reservoirs in

México exhibit an abnormal behavior which departs from the expected when traditional flow

models with Euclidean geometry are applied.

Some authors like (Camacho-Velázquez et. al. 2006), (Barker 1988), (Chang and

Yortsos 1990), among many others, believe that the reason for this anomalous behavior

can be explained assuming that the porous medium has fractal properties due to the

complex distribution of fractures. Recently, (Tarasov 2005) and (Ostoja-Starzewski, et. al.

2011, 2013) have introduced fractional measures for isotropic and anisotropic fractal

media, respectively, which allowed a systematic derivation of fractal flow models using a

fractional continuum mechanics approach. The theory of fractional continuum mechanics

can be interpreted as a generalization of the usual theory of continuum mechanics but

introducing fractional measures instead of Lebesgue measure.

In this work, two models for single phase flow in porous media with fractal properties

were derived to evaluate their performance numerically. One of the advantages of the

resulting mathematical models of anomalous flow obtained in this work is that they are

represented in terms of conventional differential equations in which their coefficients are

functions of the fractal (mass and boundary) dimensions, i. e., fractional differential

equations can be expressed as equations with integer derivatives, which has a great

advantage for their numerical solution and especially for its computational implementation.

Numerical results showed consistency with the expected anomalous behavior, where the

pressure drops at a faster or slower rate compared to the conventional flow model.

Mathematical Models:

1. Single phase flow model for isotropic fractal porous media:

is the Gamma function

Initial condition:

Boundary conditions: (No-flow conditions at all boundaries.)

2. Single phase flow model for anisotropic fractal porous media:

(no sum).

Initial condition:

Boundary conditions: (No-flow conditions at all boundaries.) Conclusions: Applying a fractional continuum mechanics approach two single

phase flow models in porous media with fractal properties were derived. The first one

was developed for isotropic fractal media using a fractional measure introduced by

(Tarasov 2005). Whereas the second model was obtained applying a fractional

measure introduced by for (Ostoja-Starzewski, et. al. 2011 and 2013) for anisotropic

media. Both models required unconventional Darcy laws for fractal media.

The numerical experiments showed a behavior consistent with the question of

anomalous diffusion, where the pressure drops with faster or slower rate compared to

conventional flow model. One of the advantages of the mathematical models of

abnormal flow obtained in the present work is that they are conventional differential

equations with additional numerical coefficients, i.e., fractional differential equations

can be expressed in terms of integer derivatives, the latter being a great advantage

for their numerical solution and computational implementation. The solutions of fractal

flow models are reduced to the solution of the conventional model if the

corresponding integer dimensions (D=2 and d=1 or α1=1=α2) are taken.

Comparing the isotropic model with respect to the anisotropic model it can be seen

that the first one in general depends on the parameters (D, d, xo) which is usually

placed in the same position of the source term, while the second model only depends

on the fractal dimensions in each direction (α1, α2). Moreover, the anisotropic model

despite of being more general doesn’t reduce to the first one. Therefore, both models

constitute two alternatives for modeling flow in fractal porous media.
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Item Description and (value)

p0 Initial pressure (3600 psi)

µ Oil viscosity (1.06 cP)

K Permeability (0.3 Darcy)

xo x-coordinate of the well (1234.44 m)

yo y-coordinate of the well (1234.44 m)

cf Oil compressibility (0.00001 1/psi)

cR Rock compressibility (0.000004 1/psi)

ct Total compressibility (0.000014 1/psi)

ϕ Porosity (0.2)

Q0 Oil production rate (300 STB/D)

Table 1. Title of the table

Results: In Figure 2, it can be observed that the pressure in the well drops faster

at the beginning but quickly stabilizes in a constant value with the increasing of the

fractal boundary dimension for a fixed value of mass fractal dimension (D=2). Note

that the conventional model (D = 2 and d = 1) is in red color. While in Figure 3, it is

seen that the pressure behavior tends to be more linear as we move away from well

with the increasing of the fractal boundary dimension. Figure 4 shows that with the

decrease of the mass fractal dimension (D) for a fixed fractal boundary value (d = 1)

in the isotropic fractal model the behavior of the pressure drop in the well at the

beginning is slower but later is faster becoming almost linear, which is very different

in comparison with the conventional model (D=2 and d=1) in red color. While in

Figure 5, it is seen that the pressure behavior tends to be lower but quickly

stabilizes in a constant value as we move away from well with the decreasing of the

mass fractal dimension.

In the anisotropic model (Figures 6 and 7), the behavior of the pressure drop in

the well is similar but slower as the mass fractal dimension D = α1+ α2 increases in

comparison with the conventional flow model. The behavior of the pressure around

the well is symmetrical if the medium is isotropic α1= α2 (see Figure 8) and

asymmetric if the fractal medium is anisotropic α1≠ α2 (see Figure 9) when the

anisotropic fractal model is applied.

Figure 2. Pressure drop in the well during 3.5

days, for the isotropic fractal model with D=2.0

and different values of the boundary dimension

(d).

Figure 3 Pressure profile along a section for the

isotropic fractal model with D=2.0 and different

values of the fractal boundary dimension (d).

Figure 4 Pressure drop in the well during 3.5

days for the isotropic fractal model with d=1 and

different values of mass fractal dimension (D).

Figure 5 Pressure profile along a section for

the isotropic fractal model with d=1 and

different values of mass fractal dimension (D).

Figure 6 Pressure in the well during 4 days, with

α1=1 and different values of α2 for the anisotropic

fractal model.

Figure 7 Pressure in the well during 4 days, with

α1=0.6 and different values of α2 for the anisotropic

fractal model.

Figure 8 Pressure in 4 days for the anisotropic

fractal model with α1=0.6= α2.

Figure 9 Pressure in 4 days for the anisotropic

fractal model with α1=0.75 and α1=0.6 .
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