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What is a fluidized bed reactor?

Bubble column reactor:
liquid � gas

Dissolution of the gas into the liquid.

Packed bed reactor:
gas

solid
� gas

Heterogeneous catalysis in porous
immobilized macro-structure

Fluidized bed reactor:
liquid

solid
� gas

Heterogeneous catalysis on moving
micro-structure.
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The application: Hydrogen generator coupled to PEM FC

Hydrogen (gas) is produced by endothermal decarboxylation of formic acid
(liquid) - in presence of a (solid) catalyst.

Figure : Scheme of the HyForm system.

Purpose: Using formic acid as a fuel to generate 1− 5kW .
Typical usage: back-up devices, i.e. start-up in a few minutes, works for many
hours, comparable with diesel aggregate.
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Constituents and phase transitions within the reactor

We treat the system, contained in a fixed control volume, as a mixture of 7 const.

FA(l), FA(g), CO2(d), CO2(g), H2(d), H2(g), Cat(s).

Subscripts "(l), (g), (s)" denote liquid, gas, solid phase and "(d)" refers to dissolved phase.
Along the decarboxylation of formic acid

FA(l)
32.9kJ−→ H2(d) + CO2(d)

we consider four phase transitions (evaporation) mechanisms

FA(l)
23.1kJ−→ FA(g)

H2(d) −→ H2(g)

CO2(d) −→ CO2(g).

Other transformation processes are assumed to be negligible.
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Model setting

Distinguishing partial densities and momenta, we consider one common
temperature field - so called Class II model.
There is a natural division of the constituent within two groups forming, so called,
pseudo phases where:
(i) Gaseous phase: denoted by ()g - consists of CO2(g), H2(g) and FA(g) which share

one common velocity field ug and Φg :=ΦCO2(g)
=ΦH2(g)

=ΦFA(g)
.

(ii) Liquid phase: denoted by ()l - consists of FA(l) and dissolved CO2(d), H2(d) which
share one common velocity field ul and Φl ≈ ΦFA.

(iii) Solid phase: denoted by ()s - consists of Cat(s).

(ii)∗ Suspension: denoted by ()ls - mixture of liquid and solid where Φls := Φl + Φs .
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Mixture theory
handling mass concentrations ci

no interfacial phenomena
usually CPU friendly

Two-phase theory
handling volume fractions Φi

tracking of interfaces
CPU-costly, steady solution (?!)

Our approach: Multi-phase (scale-up averaging) theory
Geometry of interfaces follow the mixture approach.
Interfacial phenomena are caught in the model.

Slattery, J. C., Momentum, Energy and Mass Transfer in Continua, McGraw-Hill Book Co., 1972.
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Full model
∂t (Φlsρ

true
ls ) + div

(
Φlsρ

true
ls uls

)
= −ṁgl (MaB.1)

∂t (Φgρ
true
g ) + div

(
Φgρ

true
g ug

)
= MCO2(d)

r ev
CO2(d)

+ MH2(d)
r ev
H2(d)

+ MFAr ev
FA(l)

(MaB.2)

∂t (Φsρ
true
s ) + div(Φsρ

true
s us ) = 0 (MaB.3)

∂t (ΦCO2(d)
ρtrue

CO2(d)
) + div(ΦCO2(d)

ρtrue
CO2(d)

ul ) + JCO2(d)
= MCO2(d)

r ch −MCO2(d)
r ev
CO2(d)

(MaB.4)

∂t (ΦH2(d)
ρtrue

H2(d)
) + div(ΦH2(d)

ρtrue
H2(d)

ul ) + JH2(d)
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(MaB.5)
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ρCp
duT
dt
− k∆T = −

Lch

MFA
r ch −

Lev
FA

MFA
r ev
FA −

Ldiss
CO2(d)

MCO2(d)
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CO2(d)

−
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H2(d)

MH2
r ev
H2(d)

(EnB)

∂tn + div(nug ) = R (Pop)
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Quasi-steady model
Performing parameter analysis and neglecting of some minor terms, we look for
variables Φg , Φsl , ug , uls , pls , T and n such that the following holds:

∂t (Φlsρ
true
ls ) + div
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Φlsρ

true
ls uls

)
= −MFAr ch (MaB.1)
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∂t (Φsρ
true
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Φlsρ
true
ls

dlsuls
dt

=−Φls∇pls +Φlsρ
true
ls νlsDls +Φlsρ

true
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ρCp
duT
dt
− k∆T = −

Lch

MFA
r ch (EnB)

∂tn + div(nug ) = R (Pop)

where Φls + Φg = 1, uls
slip = us − ul , ulsg

slip = usl − ul
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COMSOL implementation

1 Full model:
Laminar Bubbly Flow (CFD Module):

MaB.1, MaB.2, MoB.1, MoB.2
Heat Transfer in Fluids: EnB
Coefficient Form PDE:

MaB.3, MaB.4 + MaB.5, Pop
explicit form: MoB.3

2 Quasi-steady model:
Laminar Bubbly Flow (CFD Module):

MaB.1, MaB.2, MoB.1, MoB.2
Heat Transfer in Fluids: EnB
Coefficient Form PDE:

MaB.3, Pop
explicit form: MoB.3
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The results: Floating

Figure : Velocity Field Liquid, Temperature, Gas Concentration, Solid Concentration.
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The results: Traffic Jam Effect

Figure : Velocity Field Liquid, Temperature, Gas Concentration, Solid Concentration.
Traffic Jam Effect: ρtrue

s < ρtrue
l
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Game over!

Thank you for your attention!

Details on my poster.
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