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Introduction
[ Ie]

What is a fluidized bed reactor?
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Heterogeneous catalysis on moving
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The application: Hydrogen generator coupled to PEM FC

e Hydrogen (gas) is produced by endothermal decarboxylation of formic acid
(liquid) - in presence of a (solid) catalyst.

PEM fuel cell

(Hz +C0y), ﬂﬂ

i Decarboxylation of FA é é

Liquid FA

VHCOOH + 32.9k] —» (Hy +CO,)
HC00H
ra 15 kW

Figure : Scheme of the HyForm system.

@ Purpose: Using formic acid as a fuel to generate 1 — 5kW/.
o Typical usage: back-up devices, i.e. start-up in a few minutes, works for many
hours, comparable with diesel aggregate.
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Constituents and phase transitions within the reactor

o We treat the system, contained in a fixed control volume, as a mixture of 7 const.
FA(1): FAg): CO2(9): CO(g), Ha(a), Hag), Cat(s).
Subscripts "(/), (g), (s)" denote liquid, gas, solid phase and "(d)" refers to dissolved phase.

@ Along the decarboxylation of formic acid

9kJ
FA(/) 3& H2(cl) + COz(d)

we consider four phase transitions (evaporation) mechanisms

23.1kJ
FA(/) — FA(g)

Ha(d)y — Hag)
CO2(d) — CO2(g).

Other transformation processes are assumed to be negligible.
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Model setting

@ Distinguishing partial densities and momenta, we consider one common
temperature field - so called Class || model.
@ There is a natural division of the constituent within two groups forming, so called,
pseudo phases where:
(i) Gaseous phase: denoted by ()g - consists of COy,), Hy(g) and FA(,) which share
one common velocity field ug and ®g:=Pco, ,, =Pp,  =Pra,,.
(i) Liquid phase: denoted by (), - consists of FA(;y and dissolved COy(4y, Hz(4) Which
share one common velocity field u; and ®; =~ ®gy.
(iii) Solid phase: denoted by ()s - consists of Cat().

(ii)* Suspension: denoted by () - mixture of liquid and solid where ® := &, 4 ®,.
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@ handling mass concentrations ¢; @ handling volume fractions ®;
@ no interfacial phenomena @ tracking of interfaces
@ usually CPU friendly @ CPU-costly, steady solution (?!)

Concentration
0.00 0.25 0.50 075 1.00

Our approach: Multi-phase (scale-up averaging) theory

@ Geometry of interfaces follow the mixture approach.

@ Interfacial phenomena are caught in the model.

@ SLATTERY, J. C., Momentum, Energy and Mass Transfer in Continua, McGraw-Hill Book Co., 1972.
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Full model
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The model
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Quasi-steady model

Performing parameter analysis and neglecting of some minor terms, we look for
variables ®4, @4, ug, uss, pis, T and n such that the following holds:

De(Prspi®) + div (¢/sp"”euls) = —Mgar®" (MaB.1)
0 (Pgp ) + div (dgpf*ug) = Mpar (MaB.2)
Be(Psplre) + div(®spteus) = 0 (MaB.3)
djsuy 3 Cyptr
¢Isp;srue == — ¢Isz/s+¢lsPtrueV/sD/s+¢/sptrueg mg/uls+¢/s¢g8 Is [u is/i,l is/i, (MoB.1)
3Cd, 1sg) I
8= 5o Al (MoB.2)
9 v
(ptrue p;rue g = _5 /sp,{sz Is uésh_p (MOB.3)
s
du T Leh
0Cp — kAT = — reh (EnB)
dt Mpga
Otn+div(nug) = R (Pop)

_ lsg _
where ®) + d, =1, ushp Us — U, U = Ug — Uy
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COMSOL implementation

© Full model:

e Laminar Bubbly Flow (CFD Module):
e MaB.1, MaB.2, MoB.1, MoB.2

@ Heat Transfer in Fluids: EnB
o Coefficient Form PDE:

¥ <l Component 1 (comp1)
» = Definitions

o MaB.3, MaB.4 + MaB.5, Pop > /A Geometry T
o b iz Materials
o explicit form: MoB.3 » = Laminar Bubbly Flow: MaB.1, MaB.2, MoB.1, MoB.2 (bf)

» |# Heat Transfer in Fluids: EnB (ht)
» Au Coefficient Form PDE: MaB.3 (¢)

@ Quasi-steady model:

o Laminar Bubbly Flow (CFD Module)' » Au Coefficient Form PDE 2: MaB.4, MaB.5 (¢c2)
! » Au Coefficient Form PDE 3: Pop (c3)
e MaB.1, MaB.2, MoB.1, MoB.2 » /s Mesh 1

@ Heat Transfer in Fluids: EnB
o Coefficient Form PDE:

e MaB.3, Pop
o explicit form: MoB.3
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The results: Floating

Tme=200s Surface: Dependent variable ph_s (1) Surface} Volume fractidn, gas phase (1) Surface: Temperature (degC) Surface: Velocity magnitude, liquid phase (rs)
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Figure : Velocity Field Liquid, Temperature, Gas Concentration, Solid Concentration.
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The results: Traffic Jam Effect

Tme=200s Surface: Velocky magnitude, liquid phase (fys) Surface: Témperature (degC) Surface: Violume fraction, gas phase (1) Surface: Dependent varlable phi_s (1)
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Figure : Velocity Field Liquid, Temperature, Gas Concentration, Solid Concentration.

true

Traffic Jam Effect: pi™® < pi

Vit Orava (ICP ZHAW, MFF CUNI) COMSOL Conference: Multi-Phase Reactor Modeling October 15, 2015 11



The model
00000e

Game over!

Thank you for your attention!

Details on my poster.
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