

Federal University of Santa Catarina National University of San Juan CAPES-CAFP Bilateral Project (13/2012)

COMSOL Conference 2015

Fluid Flow Modeling in a Bioreactor Applied to Wine Production

P. M. Aballay¹, N. Padoin², O. Ortiz¹, C. Soares²

¹National University of San Juan (UNSJ), Institute of Chemical Engineering, San Juan, Argentina ²Federal University of Santa Catarina (UFSC), Department of Chemical and Food Engineering, Florianópolis-SC, Brazil

Curitiba, 06th November 2015

Research Overview

Research Overview

Wine quality is strongly dependent on the operation paramenters of the production process

In batch or fed batch bioreactors, the rotating velocity should be carefully controlled

Research Overview

Research Overview

Objective

Investigate fluid flow in a batch bioreactor applied to varietal wine production

Method

Experimental Setup (UNSJ)

Method

Numerical Setup

A 3D geometry representing the real equipment installed at UNSJ was built using COMSOL CAD

The 10 L stainless-steel tank has an inner diameter of 0.26 m and height of 0.5 m. Two baffles and an impeller ensure the mixture. A cooling-water jacket and, air supply, stirring, pH, and temperature controls are included

Method

Numerical Setup

- Pure water flow.
- Rotating velocity of 1 rpm.
- Total simulation time of 5 min (300 s).
- Mesh consisting of $\sim 7 \times 10^5$ elements.
- Segregated solver; time-stepping through BDF algorithm.

Results

Velocity Contours

Results

Velocity Isosurfaces

Results

Velocity Vectors

Conclusions

Wine production is a complex process and optimizing operation parameters is essential for enhancing varietal wine quality

> Further modeling of chemical reaction kinetics and heat transfer in the vessel will allow for a complete description of the system with COMSOL

In particular, optimizing hydrodynamics in these devices allow for reducing cell stress, while maintaining adequate mixing level

References

- COMSOL Inc., Laminar flow in a baffled stirred mixer (Application Gallery). Available at: https://br.comsol.com/model/laminar-flow-in-abaffled-stirred-mixer-8559.
- G. J. E. Scaglia, P. M. Aballay, C. A. Mengual, M. D. Vallejo, O. A. Ortiz. Improved Phenomenological Model for an Isothermal Winemaking Fermentation. Food Control 20 (2009) 887–895.
- P. M. Aballay, G. J. E. Scaglia, M. D. Vallejo, O. A. Ortiz, M. E. Serrano, C. A. Mengual, S. Rómoli. Validation of a Phenomenological Model for the State Variables in the Non-Isothermal Wine Fermentation. VII CAIQ 2013.

Acknowledgements

Facultad de Ingeniería Universidad Nacional de San Juan

COMSOL CONFERENCE 2015 CURITIBA

Thank You!

Contact Prof. Dr. Cíntia Soares cintia.soares@ufsc.br +55 (48) 3721 6409