

Modelling of DPF Regeneration

using Microwave Energy

Dr Nada Manivannan (Mani)

Centre for Electronic Systems Research Institute of Environment, Health and Societies Brunel University, UK Email: <u>emsrnnm@brunel.ac.uk</u>

COMSOL CONFERENCE 2015 PUNE

30th Oct 2015 COMSOL Conference 2015 Pune, India

Contents

- MAGS- InnovateUK project
- Basic Concepts
- Existing Microwave Cavity and COMSOL Modelling

New Project: Marine Exhaust Gase Treatment System (MAGS)

Title: Marine Exhaust Gas treatment (MAGS)
Funding body and program: TSB Vessel efficiency II
Funding requested: £0.852million (total) and £0.362million (Brunel)
Partners: SMS (Wraysbury) - Lead , IMWSS (Milton Keynes), Codel (Bakewel) and Brunel University (Uxbridge)
Outcome: Successful and started in Feb 2014

WP7: Project Management [M 1-24]

MAGS – Basic concepts

MW Cavity Design Considerations

Measurable	MW power generateMW reflected
Controllable	Variable MW power (0- Max)MW to reactor tuneable
Safety	 No microwave leaks No gas overheating No damage to magnetrons
Efficient	 More useful power Minimal heat loss Minimal cooling energy
Small foot print	 No huge structure Compact future magnetrons (solid state)

 $\begin{array}{l} MG: Magnetron~(2.45GHz)\\ WL: Water Load\\ WG1 \& WG2 : Wave guides~(WR340~a=109mm and b=54.5mm~)\\ S: Slots~\{2mm~(width)~x~109mm(height)\}\\ \lambda_g: Wavelength~of~the~waveguide~(148mm) \end{array}$

FEM Modelling Results

COMSOL multi-Physics software

FEM Modelling Results

Schematic of Pilot Scale NTPR

Brunel pilot scale NTPR MW system:

1- microwave generators (Magnetron, Isolator, Water cooling and MW power measurement);

2-Stub Tuners; 3- Waveguides;

4 - Multi-Mode Cavity;

5 -Gas inlet/outlet.

©Centre for Electronic Systems Research Pilot Scale Southampton experimental site

Engine capacity - 266kW

Experimental set-up

DPF Microwave Regeneration 2.45 GHz 2000kW (x2) Multimode Microwave Cavity

- A Surface probe temperature measurement
- B Infrared temperature measurement (RS 137)
- C Microwave multi-mode cavity (insulated (Durablanket Insulator) Quartz tube + DPF)
- D- Microwave leak measurements
- E- DPF positioned within quartz tube
- F- MW source

DPF Regeneration Attempted in the Microwave cavity (Opened)

New Project: MAGS – Soot Removal Early results

JM SiC non-catalyzed DPF Length = 18.2cm, Diameter = 14.4cm Mass – 1830 g

The soot loaded DPF before regeneration Mass- 1849g

Glow while MW is ON

Summary of Experimental Results

Mass of the SiC DPF	1830g
Mass of soot removed	10 g
Total MW energy supplied	3840kj
Temperature rise	550 ⁰ C
Energy used by DPF	755kj
% efficiency of the MW system	20%

First set of FEM modelling of Microwave Cavity using COMSOL

Existing MW cavity NT

COMSOL Geometry

MW cavity

- Microwave excited ports
- Parametrised octagonal cavity

Simulation Results - Electric field Distribution

Simulation Results - Electric field Distribution

Simulation Results -Electric field Distribution

	Max Electric Field Average Electr within the cavity Field within th (V/m) cavity (V/m)	
Existing Cavity	1.5 x 10 ⁵	6.4 x 10 ⁴
А	4.0 x 10 ⁵	7.9 x 10 ⁴
В	8.9 x 10 ⁴	6.3 x 10 ⁴
С	2.7 x 10 ⁵	16.2 x 10 ⁴

- Homogenous Electric Field ensures homogenous heating of DPF 'C' is the best
- Heating of dielectric material (SiC) directly proportional to square of Electric field.

where, P - power dissipated in the material [W/m3], f - microwave frequency [Hz], ε_o - electric permittivity of vacuum [F/m], E_{rms} - root mean square value of electric field strength with in the material, V - volume of the material and E'' - dielectric loss factor (= $\sigma/(2\Lambda f)$.

First set of FEM modelling of Microwave Cavity using COMSOL

**	Property	Name	Value	Unit
~	Relative permittivity	epsilonr	30-11*j	1
~	Relative permeability	mur	1	1
~	Electrical conductivity	sigma	0.001	S/m
~	Thermal conductivity	k	120	W/(m⋅K)
~	Density	rho	3000	kg/m³
~	Heat capacity at constant pressure	Ср	750	J/(kg·K)

Physics of the Model Coupled Model

• Electro Magnetic wave propagation

$$\nabla \times \mu_{r}^{-1}(\nabla \times E) - K_{0}^{2}\left(\epsilon_{r} - \frac{j\sigma}{\omega\epsilon_{0}}\right)E = 0$$

Where μ_r - permeability of the medium, ϵ_o - permittivity of the medium, **E** - electric field vector, σ - density of the medium, K_o – wave number.

Boundary Condition of the walls

$$\mathbf{n} \times \mathbf{E} = \mathbf{0}$$

where \boldsymbol{n} – normal vector to the walls.

Physics of the Model

Heat Transfer in Solids (ignored other form of heat transfer)

Governing equation

$$\rho C_p. \nabla T = \nabla . (k \nabla T) + Q$$

$$Q = Q_{rh} + Q_{ml}$$
$$Q_{rh} = \frac{1}{2} \operatorname{Re}(\mathbf{J}.\mathbf{E}^*)$$
$$Q_{ml} = \frac{1}{2} \operatorname{Re}(\mathbf{B}.\mathbf{H}^*)$$

where, ρ is the density of the material, $C_{\rho}~$ is specific heat capacitance at constant pressure (1 atm) and Q is the heat source.

Simulation Results Electric filed

Simulation Results- Thermal Profile

Simulation – Various Cavity Length

Electric field for various dimensions of the cavity (a) 333mm (b) 433mm and (c) 533mm

Conclusion

- Design of DPF regeneration cavity
- Electric field calculations
- Thermal profile of cavity and DPF
- Challenges
 - Accurate model of DPF (Cell structured (600 cpi))
 - Large number of boundary surface and domain
 - Computer RAM issues ?

Acknowledgements

InnovateUK (TSB) for the financial support provided to the project 'Marine Exhaust Gas Treatment System (MAGS) {grant reference number 42471-295209}'

Brunel Team

Prof Wamadeva Balachandran Dr Maysam Abbod Mr David Brennen Mr Nehemiah Alozie

Mike Jackson, ixcient Don Geogery, SMS, UK

Thank you for the attention!