

Investigations on polarization losses in planar Solid Oxide Fuel Cells

S.Senthil Kumar, Akshay Iyer, B. ShriPrakash, S.T. Aruna CSIR – National Aerospace Laboratories Bangalore-560017

Solid Oxide Fuel Cell (SOFC)

$$H_2 + 2O_2^- \rightarrow 2H_2O + 4e^-.$$

At the cathode:

$$O_2 + 4e^- \rightarrow 2O_2^-$$

• The overall cell reaction:

$$O_2 + 2H_2 \rightarrow 2H_2O$$

Roles of Electrolyte:

- Oxygen ion conduction
- Physically seperates the fuel from oxidant

Roles of Electrode:

- •Hosts triple phase boundary to support electrochemical reactions
- •Provides path for O²⁻ ions/electrons
- Provides channels for gas diffusion
- •Gives mechanical support to system

Types of SOFC Design

Background and Significance

- Solid Oxide Fuel Cell (SOFC) has been consistently rated as one of the top sources of alternative energy due to its high efficiency
- It is essential to optimize various polarization losses to realize the maximum efficiency.
- Voltage losses associated with electrode and electrolyte can vary with different types of SOFC viz. anode, cathode and electrolyte supported SOFC.
- Voltage losses categorized as activation, ohmic and concentration
- Recent efforts in SOFC development centered on reducing these losses
- So it is crucial to establish best possible configuration in the perspective of polarization loss.

Objectives

- ➤ To simulate solid oxide fuel cell (SOFC) using COMSOL Multiphysics
- > To experimentally verify the simulated results
- ➤ To establish the polarization losses of different SOFC configurations such as anode, cathode and electrolyte supported designs

COMSOL Simulation

• Geometry: Single Channel SOFC

Meshing: Face Mapped Mesh swept along the length of SOFC

Physics Involved:

• Secondary current Distribution: Determines current profile. Accounts for the effect of the electrode kinetics and losses due to resistance.

- Transport of Concentrated Species: Determines species flux across electrode. Involves flow of species across the porous electrodes via diffusion and transport of oxide ion
- Free and Porous Media Flow: Determines flow profile. Accounts for flow in channel and porous media

Experimental: Fabrication Procedure

Anode Supported SOFC single cell

Microstructure of SOFC single cell

Experimental: Button Cell characterization

- ➤ Linear sweep voltammetry
- ➤ Performance study at various temperatures (700 °C -800 °C)
- Exchange current density by Tafel plot

Exchange Current Density

-1.0

-1.1

-1.2

-1.3

-1.4

0.00090

- Exchange current density is an important electrochemical property
- It is a measure of electro catalytic activity of electrode
- Dependant on structure & material of electrode and also type of fuel used

$$\log(i_0) = -3491.6(\frac{1}{T}) + 1.9692$$

 $\log(i_0) = -3944.6(\frac{1}{T}) + 2.6261$

0.00095

Cathode Activation Energy= 29.03 kJmol⁻¹

Anode Activation Energy= 39.73 kJmol⁻¹

Anode

0.00100

0.00105

Model Validation

Polarization Curve at 800°C

Electrolyte Supported Cell

■ Simulated 1.1 -■ Experimental 1.0 0.9 Voltage (V) 0.8 0.7 0.6 0.5 0.02 0.04 0.06 0.08 0.10 0.00 Current Density (A/cm²)

Electrolyte thickness -1mm Anode – 100 μ Cathode – 100 μ

Anode Supported Cell

Electrolyte thickness -10 μ Anode – 1 mm Cathode – 100 μ

Effect of Parameters

Electrolyte Thickness

Temperature

Good agreement between experimental and simulated results!!

Simulation Results

Effect of Electrolyte thickness

• Effect of Anode thickness

• Effect of Cathode Thickness

Activation Over potential losses at the individual interface

(At Cell voltage 0.7V and 800°C)

- Drastic reduction in electrochemical reaction in electrolyte supported cell
- \triangleright Cathode activity increases with cathode thickness in the thickness range of 10 -100 μ

Effect Of Support Thickness

At Cell voltage 0.7V and 800°C

$$R_{ohm} = \left(\left(\frac{\delta_{anods}}{\sigma_{anods}} \right) + \left(\frac{\delta_{slsctrolyts}}{\sigma_{slsctrolyts}} \right) + \left(\frac{\delta_{cathods}}{\sigma_{cathods}} \right) \right) \\ \eta_{act} = \frac{RT}{\alpha n F} sinh^{-1} \left(\frac{j}{2j_0} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2O} P_{H2tpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2Otpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2Otpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2Otpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2Otpb}} \right) \\ \eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb} P_{H2}}{P_{H2Otpb}} \right)$$

$$\eta_{act} = \frac{RT}{\alpha nF} \sinh^{-1} \left(\frac{j}{2j_0} \right)$$

$$\eta_{conc} = \frac{RT}{2F} ln \left(\frac{P_{H2Otpb}P_{H2}}{P_{H2O}P_{H2tpb}} \right) + \frac{RT}{4F} ln \left(\frac{P_{O2}}{P_{O2tpb}} \right)$$

Optimization of Concentration Overpotential

- Concentration over potential dominates at low fuel inlet velocity
- A compromise needs to be made between fuel utilization and power output

Operating cell voltage

 $(At 800^{0}C)$

Fuel inlet velocity = 0.35m/s

- Efficiency maximizes around 0.7 V
- Fuel utilization drops at higher voltage due to low current generation for the given fuel

Conclusion

- ➤ Modeling and simulation of SOFC was carried out with COMSOL multiphysics.
- ➤ The experimental results validated the model.
- > The deviation at any point of VI curve was less than 8%.
- ➤ Best agreement between simulated and experimental results was evident at 0.7 V Operating voltage.
- For a given support thickness, concentration polarization of ASC was twice that of CSC. However, activation over potential of CSC was marginally higher than ASC.
- Thus, in the perspective of polarization losses, cathode supported SOFC was found to be superior than anode supported design.

Acknowledgements

The Director, NAL

Dr. C Anandan, Head, SED Division

CSIR-Network project (CERMESA)-Funding

M/s. Carborundum Universal Ltd. - Funding

Thank you

