Sound Pressure Amplification using-FP Resonance of Acoustic Metamaterial Cavity

Material Systems Design Laboratory Dept. Mechanical Engineering Hongik University

Proffo Jedo Kim

Contents

1. Physical Property Augmentation using Metamaterials
2. Coiled-up Space Acoustic Metamaterial Amplification Cavity
3. Applications

EM Property Augmentation using Metamaterials

- Metamaterials are periodic or quasi-periodic, sub-wavelength metal structures. The material properties are derived from its structure rather than inheriting them directly from its material composition.

empty glass $\mathbf{n}=1$

regular water, $\mathrm{n}=1.3$

"negative" water, $\mathrm{n}=-1.3$

EM Property Augmentation using Metamaterials

- In electromagnetics, electric permittivity(ε), and magnetic permeability (μ) are the two fundamental parameters characterizing the EM property of a medium.
- Depending on the signs of ε and μ, materials can be categorized into 4 groups.

EM Property Augmentation using Metamaterials

SOVIET PHYSICS USPEKHI
VOLUME 10, NUMBER 4
JANUARY-FEBRUARY 1968
538.30

THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE $V A L U E S$ OF $\in A N D \mu$
V. G. VESELAGO
P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Usp. Fiz. Nauk 92, 517-526 (July, 1964)

1. INTRODUCTION
$T_{\text {HE dielectric constant } \epsilon \text { and the magnetic permea- }}$
II. THE PROPAGATION OF WAVES IN A SUBSTANCE WITH $\epsilon<0$ AND $\mu<0$. "RIGHT-HANDED" AND "LEFT-HANDED" SUBSTANCES

- The first theoretical study was performed by V.G. VESELAGO and it took nearly 30 years for experimental verification.

EM Property Augmentation using Metamaterials

```
Composite Medium with Simultaneously Negative Permeability and Permittivity
D. R. Smith,* Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz
Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0319
(Received 2 December 1999)
```

- D.R. Smith showed simultaneous negative permeability and permittivity for the first time.

VOLUME 85, NUMBER 18
PHYSICAL REVIEW LETTERS
30 OCTOBER 2000

Negative Refraction Makes a Perfect Lens
J. B. Pendry

Condensed Matter Theory Group, The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom (Received 25 April 2000)

- J.B. Pendry proposed concept of perfect lens using negative refractive index and this is the most famous work in the world of metamaterials.

EM Property Augmentation using Metamaterials

Split Ring Resonator (SRR)
$\varepsilon(\omega)=\varepsilon_{o}\left[1-\frac{\omega_{p}^{2}}{\omega(\omega+i \gamma)}\right]$
$\omega_{p}=N e^{2} / m \varepsilon_{o}$ is the plasma frequency in which the collection of electrons oscillate in the presence of electric field. When $\gamma=0$ and $\omega<\omega_{\mathrm{p}}$ negative permittivity is achieved. For most materials, when $\omega<\omega_{\mathrm{p}}$, $\omega \ll \gamma$ (absorption dominated). Using subwavelength periodic rods, it is possible to increase the effective mass of the electrons which decrease the ω_{p}. SRRs create RLC circuit.

EM Property Augmentation using Metamaterials

Negative refraction: $\varepsilon<0, \mu<0$

- SRR and solid rod composite material was used to achieve double negative material.
- Periodic unit cells act as 'meta-atoms' which show effective medium properties in subwavelength regime.

EM Property Augmentation using Metamaterials

- Many extraordinary properties are being discovered and new systems such as super lens, cloaking, reverse Doppler etc are being researched.
- However very narrow resonance bandwidth and high losses are problems for EM metamaterial systems.

Analogy between Acoustics and EM

Acoustics	Electromagnetism (THz)	Analogy
$\frac{\partial P}{\partial x}=-i \omega \rho_{x} u_{x}$	$\frac{\partial E_{z}}{\partial x}=-i \omega \mu_{y} H_{y}$	
$\frac{\partial P}{\partial y}=-i \omega \rho_{y} u_{y}$	$\frac{\partial E_{z}}{\partial y}=i \omega \mu_{x} H_{x}$	
$\frac{\partial u_{x}}{\partial x}+\frac{\partial u_{x}}{\partial y}=-i \omega \beta P$	$\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=-i \omega \epsilon_{z} E_{z}$	
Acoustic pressure P	Electric field E_{z}	
Particle velocity $u_{x} u_{y}$	Magnetic field $H_{x} H_{y}$	$H_{y} \leftrightarrow-U_{x} H_{x} \leftrightarrow u_{y}$
Dynamic density $\rho_{x} \rho_{y}$	Permeability $\mu_{x} \mu_{y}$	$\rho_{x} \leftrightarrow \mu_{y} \rho_{y} \leftrightarrow \mu_{x}$
Dynamic compressibility β	Permittivity ε_{z}	$\varepsilon_{z} \leftrightarrow \beta$

- 1 to 1 correspondence is possible between acoustics and Electromagnetism.
- Therefore many EM metamaterial related phenomenon can be replicated in the acoustic regime and more.

Coiled-up Space Metamaterial Design

Unit Cell
(1 cm)

Acoustic Wave
Propagation

- Solid structure which results in a 'zigzag' path is designed.
- Acoustic waves must travel along this zigzag path rather than the straight path.
- The subwavelength structure create an effective medium.

Double-fish net Metamaterial Cavity

Single-walled Metamaterial Slab

Double-walled Metamaterial Slab

- FP like resonance modes are present for the single-walled metamaterial slab.
- FP is modified and strong amplification phenomena exists inside the cavity

Reduced Reflection Coefficient

Metamaterial
Slab 1 Slab 2
Aluminum Duct

- First experimental results show sharp drop in the reflection coefficient at the fundamental FP resonance frequency

Emission Enhancement of Metamaterial Cavity

- Point source inside the cavity shows strong emission enhancement results.
- The acoustic wave field is strongly localized within the low impedance air gap.

Emission Enhancement of Metamaterial Cavity

- 15 dB (x 30 power, x 5.5 pressure ampitude) emission ennancement can be achieved.
- The incident wave ($1000 \mathrm{~Hz}, \lambda=34 \mathrm{~cm}$) can be amplified in a cavity which has unit cell size of $1 \mathrm{~cm}(1 / 34)$ and length of $4 \mathrm{~cm}(\sim 1 / 9)$ subwavelength structure.

Effective Control of Refractive Index and Impedance

$w=3 \mathrm{~mm}$

$w=5 \mathrm{~mm}$

1
$w=7 \mathrm{~mm}$

- Increasing the path length increases the refractive index since the effective speed of sound is reduced.

$$
\begin{array}{ll}
\mathrm{n}=\mathrm{c}_{\mathrm{o}} / \mathrm{c}_{1}, & \begin{array}{l}
\text { where } \\
\mathrm{n}=\text { refractive index, } \mathrm{c}_{\mathrm{o}}=\text { speed of sound in reference material } \\
\mathrm{c}=\text { speed of sound in medium }
\end{array}
\end{array}
$$

Sonic Boost using Acoustic Metamaterial Cavity

- A microphone was place inside the metamaterial cavity to detect the amplified acoustic pressure from an outside source.

Sonic Boost using Acoustic Metamaterial Cavity

- 15 dB (x 30 power, x 5.5 pressure amplitude) emission enhancement can be achieved.
- The incident wave ($1000 \mathrm{~Hz}, \lambda=34 \mathrm{~cm}$) can be amplified in a cavity which has unit cell size of $1 \mathrm{~cm}(1 / 34)$ and length of $3 \mathrm{~cm}(\sim 1 / 10)$ subwavelength structure.

Independent Control of Refractive index and Impedance

- Strong pressure amplification due to increased impedance.
- High index of refraction reduces the resonance frequency.

Effective Medium Theory and Reduced Particle Velocity

- Effective medium theory exactly replicates the sound pressure amplification results.
- Pressure is increased due to reduced particle velocity ($P=I / c_{p}$).

Underwater SPL Amplification

Further Enhancement using Quarter Wave
Resonator

SPL Amplification in an Underwater
Environment

