	Implementation in COMSOL Multiphysics	

Simulation of Thermomechanical Couplings of Viscoelastic Materials

Frank Neff¹, Thomas Miquel², Michael Johlitz¹, Alexander Lion¹

¹Institute of Mechanics Faculty for Aerospace Engineering Universität der Bundeswehr München ²École Polytechnique, Paris

October, 14th 2016

	Implementation in COMSOL Multiphysics	
Contents		

Introduction	Implementation in COMSOL Multiphysics	
Contents		

Implementation in COMSOL Multiphysics

Introduction ●○○		Implementation in COMSOL Multiphysics	
Motivat	ion		

Tech elast	Technical applications of elastomers, e.g.			
٩	bearings			
۹	tires			
9	sealings			
0	etc.			

CSR New Material Technologies GmbH

Introduction ●○○		Implementation in COMSOL Multiphysics	
Motivat	ion		

Technical applications of elastomers, e.g.

- tires
- sealings
- etc.

Properties of elastomers

- viscoelastic material behaviour
- glass transition
- aging (physical, chemical)
- Mullins-Effect
- Payne-Effect
- self-heating
- swelling

CONFERENCE 2016 MUNICH

CSR New Material Technologies GmbH

www.citoen-L-attraction.de

Introduction	Implementation in COMSOL Multiphysics	
000		
Motivation		

Self-heating

- dynamic mechanical loads and finite strains
- energy dissipation causes increase in temperature

Introduction	Implementation in COMSOL Multiphysics	
000		
Motivation		

Self-heating

- dynamic mechanical loads and finite strains
- energy dissipation causes increase in temperature

Need to consider self-heating

- temperature influences the whole stress-strain relation
- dynamic mechanical loads cause change in temperature
- complex structures exhibit a complex temperature field

Introduction	Implementation in COMSOL Multiphysics	
000		
Motivation		

Challenges

- finite viscoelastic material behaviour (isothermal)
- coupling between dissipated energy and temperature
- temperature dependent change of material parameters
- time efficient computation

Introduction	Implementation in COMSOL Multiphysics	
000		
Motivation		

Challenges

- finite viscoelastic material behaviour (isothermal)
- coupling between dissipated energy and temperature
- temperature dependent change of material parameters
- time efficient computation

Our contributions

- model for non-linear viscoelastic materials
- model for heat transfer
- multiphysics coupling thermal expansion
- multiphysics coupling dissipation

following:

- Johlitz 2015
- Dippel 2015
- Dippel and Johlitz 2014

COMSOL CONFERENCE 2016 MUNICH

Universität 🎪 München

379

378

376

375

	Modelling	Implementation in COMSOL Multiphysics	
Contents			

Implementation in COMSOL Multiphysics

Introduction 000 Modelling ●0000 mplementation in COMSOL Multiphysics

Results and Conclusions

Literatur

Kinematics

Deformation Gradient ${f F}$

Separate volumetric and isocoric deformation

- volumetric deformation F due to thermal expansion
- elastomers are considered as nearly incompressible referring to mechanical loads
- ${\ensuremath{ \bullet}}$ isochoric deformation $\hat{\mathbf{F}}$ due to mechanical loadings
- multiplicative split of the deformation gradient (Lee 1969)
 - $\mathbf{F} = \hat{\mathbf{F}} \cdot \bar{\mathbf{F}}$

Introduction 000 Modelling ●0000 mplementation in COMSOL Multiphysics

Results and Conclusions

Literatur

Kinematics

Deformation Gradient ${f F}$

Separate volumetric and isocoric deformation

- volumetric deformation F due to thermal expansion
- elastomers are considered as nearly incompressible referring to mechanical loads
- ${\ensuremath{ \bullet}}$ isochoric deformation $\hat{\mathbf{F}}$ due to mechanical loadings
- multiplicative split of the deformation gradient (Lee 1969) $\mathbf{F} = \hat{\mathbf{F}} \cdot \bar{\mathbf{F}}$

Volumetric deformation gradient $\bar{\mathbf{F}}$

 $\bullet \quad \bar{\mathbf{F}} = J^{\frac{1}{3}}\mathbf{I}$

•
$$\det\left(\bar{\mathbf{F}}\right) = \alpha \left(\theta - \theta\right)$$

 \bullet coefficient of thermal expansion α

Introduction 000 Modelling ●○○○○ mplementation in COMSOL Multiphysics

Results and Conclusions

Literatur

Kinematics

Deformation Gradient ${f F}$

Separate volumetric and isocoric deformation

- volumetric deformation F due to thermal expansion
- elastomers are considered as nearly incompressible referring to mechanical loads
- ${\ensuremath{ \bullet}}$ isochoric deformation $\hat{\mathbf{F}}$ due to mechanical loadings
- $\label{eq:constraint} \begin{array}{l} \bullet \\ \mbox{multiplicative split of the deformation gradient} \\ \mbox{(Lee 1969)} \\ \mbox{F} = \hat{\mathbf{F}} \cdot \bar{\mathbf{F}} \end{array}$

mplementation in COMSOL Multiphysics

Results and Conclusions

Literatur

Kinematics

Finite viscoelasticity

Modelling ○●○○○ mplementation in COMSOL Multiphysics

Results and Conclusions

Kinematics

Finite viscoelasticity

Modelling	Implementation in COMSOL Multiphysics	
00000		

Entropy balance

Clausius-Duhem-Inequality (CDI) (Haupt 2002)

$$-\rho_0 \dot{\psi} + \bar{\mathbf{T}} : \dot{\mathbf{E}} - \rho_0 \, s \, \dot{\theta} - \frac{\mathbf{q}_0}{\theta} \cdot \operatorname{Grad} \theta \ge 0$$

- ψ : Helmholtz free energy
- Ī: 2nd Piola-Kirchhoff stress tensor
- E: Green-Lagrangean strain tensor

Modelling	Implementation in COMSOL Multiphysics	

Entropy balance

Clausius-Duhem-Inequality (CDI) (Haupt 2002)

$$-\rho_0 \dot{\psi} + \bar{\mathbf{T}} : \dot{\mathbf{E}} - \rho_0 \, s \, \dot{\theta} - \frac{\mathbf{q}_0}{\theta} \cdot \operatorname{Grad} \theta \ge 0$$

- ψ : Helmholtz free energy
- T: 2nd Piola-Kirchhoff stress tensor
- E: Green-Lagrangean strain tensor

Additive formulation of the Helmholtz free energy

 $\psi = \psi_{eq}^{vol}\left(J,\theta\right) + \psi_{eq}^{iso}\left(\hat{\mathbf{C}}\right) + \psi_{neq}^{iso}\left(\hat{\mathbf{C}}_{e}\right)$

Kinetics			
	Modelling ○○●○○	Implementation in COMSOL Multiphysics	

Entropy balance

Clausius-Duhem-Inequality (CDI) (Haupt 2002)

$$-\rho_0 \dot{\psi} + \bar{\mathbf{T}} : \dot{\mathbf{E}} - \rho_0 \, s \, \dot{\theta} - \frac{\mathbf{q}_0}{\theta} \cdot \operatorname{Grad} \theta \ge 0$$

- ψ : Helmholtz free energy
- T: 2nd Piola-Kirchhoff stress tensor
- E: Green-Lagrangean strain tensor

Additive formulation of the Helmholtz free energy

$$\psi = \psi_{eq}^{vol}\left(J,\theta\right) + \psi_{eq}^{iso}\left(\hat{\mathbf{C}}\right) + \psi_{neq}^{iso}\left(\hat{\mathbf{C}}_e\right)$$

Helmholtz free energy and CDI

$$- \left(p + \rho_0 \; \frac{\partial \psi_{eq}^{vol}}{\partial J} \right) \dot{J} - \left(\rho_0 \; s + \rho_0 \; \frac{\partial \psi_{eq}^{vol}}{\partial \theta} \right) \dot{\theta} - \frac{\mathbf{q}_0}{\theta} \cdot \mathsf{Grad} \; \theta + \\ \left(\frac{1}{2} \; J \; \hat{\mathbf{T}} - \rho_0 \; \frac{\partial \psi_{eq}^{iso}}{\partial \hat{\mathbf{C}}} - \rho_0 \; \hat{\mathbf{F}}_i^{-1} \cdot \; \frac{\partial \psi_{neq}^{iso}}{\partial \hat{\mathbf{C}}_e} \cdot \hat{\mathbf{F}}_i^{-T} \right) : \dot{\mathbf{C}} + \rho_0 \; \frac{\partial \psi_{neq}^{iso}}{\partial \hat{\mathbf{C}}_e} : \left(\hat{\mathbf{C}}_e \cdot \hat{\mathbf{L}}_i + \hat{\mathbf{L}}_i \cdot \hat{\mathbf{C}}_e \right) \ge 0$$

Universität 🚯 Münd

CONFERENCE 2016 MUNICH

	Modelling ○○○●○	Implementation in COMSOL Multiphysics	
Material modelling			

Material modelling

Approach for Helmholtz free energy density

$$\begin{split} \rho_{0} \psi_{eq}^{vol} &= \frac{1}{2} K \left[\left(J - 1 \right)^{2} + \left(\ln J \right)^{2} \right] - K \alpha \left(J - 1 \right) \left(\theta - \theta_{0} \right) - \rho_{0} c(\theta) \\ \rho_{0} \psi_{eq}^{iso} &= c_{10} \left(\mathbf{l}_{\mathbf{\hat{C}}} - 3 \right) \\ \rho_{0} \psi_{neq}^{iso} &= c_{10}^{e} \left(\mathbf{l}_{\mathbf{\hat{C}}_{e}} - 3 \right) \end{split}$$

	Modelling ○○○●○	Implementation in COMSOL Multiphysics	
Material modelling			

Material modelling

Approach for Helmholtz free energy density

$$\begin{split} \rho_{0} \psi_{eq}^{vol} &= \frac{1}{2} K \left[\left(J - 1 \right)^{2} + \left(\ln J \right)^{2} \right] - K \alpha \left(J - 1 \right) \left(\theta - \theta_{0} \right) - \rho_{0} c(\theta) \\ \rho_{0} \psi_{eq}^{iso} &= c_{10} \left(\mathbf{l}_{\hat{\mathbf{C}}} - 3 \right) \\ \rho_{0} \psi_{neq}^{iso} &= c_{10}^{e} \left(\mathbf{l}_{\hat{\mathbf{C}}_{e}} - 3 \right) \end{split}$$

Evaluation of the constitutive equations

$$\begin{split} p &= -K \left[(J-1) + \frac{\ln J}{J} \right] + K \alpha ~ (\theta - \theta_0) \\ s &= \frac{1}{\rho_0} \left(K \alpha ~ (J-1) + \rho_0 ~ \frac{\partial c(\theta)}{\partial \theta} \right) \\ \hat{\mathbf{T}} &= 2 J^{-1} c_{10} \, \mathbf{I} + 2 J^{-1} c_{10}^e ~ \hat{\mathbf{C}}_1^{-1} - \frac{2}{3} J^{-1} \left(c_{10} \operatorname{tr} \hat{\mathbf{C}} + c_{10}^e \operatorname{tr} \hat{\mathbf{C}}_e \right) \hat{\mathbf{C}}^{-1} \end{split}$$

undeswehr J München

	Modelling ○○○○●	Implementation in COMSOL Multiphysics		
Material modelling				
Final equations				

2nd Piola-Kirchhoff stress tensor

$$\bar{\mathbf{T}} = -p \, J \, \mathbf{C}^{-1} + 2 \, J^{-\frac{2}{3}} \, c_{10} \left(\mathbf{I} - \frac{1}{3} \operatorname{tr}(\hat{\mathbf{C}}) \hat{\mathbf{C}}^{-1} \right) + 2 \, J^{-\frac{2}{3}} \, c_{10}^{e} \left(\hat{\mathbf{C}}_{i}^{-1} - \frac{1}{3} \operatorname{tr}\left(\hat{\mathbf{C}}_{i}^{-1} \cdot \hat{\mathbf{C}} \right) \hat{\mathbf{C}}^{-1} \right)$$

	Modelling ○○○○●	Implementation in COMSOL Multiphysics		
Material modelling				
Final equations				

2nd Piola-Kirchhoff stress tensor

$$\bar{\mathbf{T}} = -p \, J \, \mathbf{C}^{-1} + 2 \, J^{-\frac{2}{3}} \, c_{10} \left(\mathbf{I} - \frac{1}{3} \operatorname{tr}(\hat{\mathbf{C}}) \hat{\mathbf{C}}^{-1} \right) + 2 \, J^{-\frac{2}{3}} \, c_{10}^{e} \left(\hat{\mathbf{C}}_{i}^{-1} - \frac{1}{3} \operatorname{tr}\left(\hat{\mathbf{C}}_{i}^{-1} \cdot \hat{\mathbf{C}} \right) \hat{\mathbf{C}}^{-1} \right) \, \left| \hat{\mathbf{C}}_{i}^{-1} \right| \, d\mathbf{C}_{i}^{e} = -p \, J \, \mathbf{C}_{i}^{e} \, d\mathbf{C}_{i}^{e} + 2 \, J^{-\frac{2}{3}} \, c_{10}^{e} \left(\hat{\mathbf{C}}_{i}^{-1} - \frac{1}{3} \operatorname{tr}\left(\hat{\mathbf{C}}_{i}^{-1} \cdot \hat{\mathbf{C}} \right) \hat{\mathbf{C}}^{-1} \right) \, d\mathbf{C}_{i}^{e} + 2 \, J^{-\frac{2}{3}} \, c_{10}^{e} \left(\hat{\mathbf{C}}_{i}^{e} - \frac{1}{3} \operatorname{tr}\left(\frac{1}{3} \operatorname{tr}\left(\hat{\mathbf{C}}_{i}^{e} - \frac{1}{3} \operatorname{tr}\left(\frac{1}{3}$$

Evolution equation

$$\dot{\hat{\mathbf{C}}}_{i} = \frac{2 c_{10}^{2}}{\eta(\theta)} \left(\hat{\mathbf{C}} - \frac{1}{3} \operatorname{tr} \left(\hat{\mathbf{C}} \cdot \hat{\mathbf{C}}_{i}^{-1} \right) \hat{\mathbf{C}}_{i} \right)$$

	Modelling ○○○○●	Implementation in COMSOL Multiphysics	
Material modelling			

Final equations

2nd Piola-Kirchhoff stress tensor

$$\bar{\mathbf{T}} = -p \, J \, \mathbf{C}^{-1} + 2 \, J^{-\frac{2}{3}} \, c_{10} \left(\mathbf{I} - \frac{1}{3} \operatorname{tr}(\hat{\mathbf{C}}) \hat{\mathbf{C}}^{-1} \right) + 2 \, J^{-\frac{2}{3}} \, c_{10}^{e} \left(\hat{\mathbf{C}}_{i}^{-1} - \frac{1}{3} \operatorname{tr}\left(\hat{\mathbf{C}}_{i}^{-1} \cdot \hat{\mathbf{C}} \right) \hat{\mathbf{C}}^{-1} \right)$$

Evolution equation

$$\dot{\hat{\mathbf{C}}}_{i} = \frac{2 c_{10}^{e}}{\eta(\theta)} \left(\hat{\mathbf{C}} - \frac{1}{3} \operatorname{tr} \left(\hat{\mathbf{C}} \cdot \hat{\mathbf{C}}_{i}^{-1} \right) \hat{\mathbf{C}}_{i} \right)$$

Heat transfer equation

 $K \alpha \theta \dot{J} + \rho_0 \left(A + B \theta \right) \dot{\theta} - \lambda_{\theta} \operatorname{Div} \left(\operatorname{Grad} \left(\theta \right) \right) - c_{10}^e \hat{\mathbf{C}}_i^{-1} \cdot \hat{\mathbf{C}} \cdot \hat{\mathbf{C}}_i^{-1} : \dot{\hat{\mathbf{C}}}_i = 0$

	Modelling ○○○○●	Implementation in COMSOL Multiphysics			
Material modelling					
Final equations					

2nd Piola-Kirchhoff stress tensor

$$\bar{\mathbf{T}} = -p \, J \, \mathbf{C}^{-1} + 2 \, J^{-\frac{2}{3}} \, c_{10} \left(\mathbf{I} - \frac{1}{3} \operatorname{tr}(\hat{\mathbf{C}}) \hat{\mathbf{C}}^{-1} \right) + 2 \, J^{-\frac{2}{3}} \, c_{10}^{e} \left(\hat{\mathbf{C}}_{i}^{-1} - \frac{1}{3} \operatorname{tr}\left(\hat{\mathbf{C}}_{i}^{-1} \cdot \hat{\mathbf{C}} \right) \hat{\mathbf{C}}^{-1} \right)$$

Evolution equation

$$\dot{\hat{\mathbf{C}}}_{i} = \frac{2 c_{10}^{e}}{\eta(\theta)} \left(\hat{\mathbf{C}} - \frac{1}{3} \operatorname{tr} \left(\hat{\mathbf{C}} \cdot \hat{\mathbf{C}}_{i}^{-1} \right) \hat{\mathbf{C}}_{i} \right)$$

Heat transfer equation

$$K \alpha \theta \dot{J} + \rho_0 \left(A + B \theta \right) \dot{\theta} - \lambda_{\theta} \operatorname{Div} \left(\operatorname{Grad} \left(\theta \right) \right) - c_{10}^e \, \hat{\mathbf{C}}_i^{-1} \cdot \hat{\mathbf{C}} \cdot \hat{\mathbf{C}}_i^{-1} : \dot{\hat{\mathbf{C}}}_i = 0$$

Williams-Landel-Ferry equation (WLF)

$$\eta(\boldsymbol{\theta}) = \eta_0 \exp\left(-\frac{C_1(\boldsymbol{\theta} - \boldsymbol{\theta}_G)}{C_2 + \boldsymbol{\theta} - \boldsymbol{\theta}_G}\right)$$

COMPOL CONFERENCE 2016 MUNICH Universität München

	Implementation in COMSOL Multiphysics	
Contents		

3 Implementation in COMSOL Multiphysics

Implementation in COMSOL Multiphysics $\bullet \circ \circ$

Results and Conclusions

Literatur

Physics interfaces

Mechanical behaviour

Physics interface: Finite Viscoelasticity

- Fixed Constraint
- Predescribed Displacement
- Predescribed Load

Implementation in COMSOL Multiphysics

Results and Conclusions

Literatur

Physics interfaces

2016 MUNICH

Mechanical behaviour

Physics interface: Finite Viscoelasticity

Domain feature

Boundary conditions:

- Fixed Constraint
- Predescribed Displacement
- Predescribed Load

	 Hyperelasticity 		
	Neo-H	looke-Parameter:	
	c ₁₀	0.25[MPa]	P
	bulk m	nodulus:	
	κ	250(MPa)	
	Incom	pressibility:	
	Peni	atly Formulation	•
	Numb	er of Maxwell-Elements:	
	Nélem	ant 2 Maxwell-Elements	
	* M	daterial Parameter 1. Maxwell-Element	
	1. relax	sation time:	
	n,	3	
	1. stiffe	ness parameter:	
	C10e0	0.05[MPa]	P
	Ψ M	faterial Parameter 2. Maxwell-Element	
	2. relax	xation time:	
	r ₂	30	5
	2. stiffe	ness parameter:	
	C16e2	0.05[MPa]	5
COMS	ERE	NCE	

Universität 👷 München

Implementation in COMSOL Multiphysics $O \bullet O$

Results and Conclusions

Literatur

Physics interfaces

Thermal behaviour

Implementation in COMSOL Multiphysics O = O

Results and Conclusions

Literatur

Physics interfaces

Thermal behaviour

Domain feature: Heat Transfer 1

Fourier heat transfer

COMSOL CONFERENCE

2016 MUNICH

Multiplusies equality		
	Implementation in COMSOL Multiphysics	

Couplings

Multiphysics coupling: Thermal Expansion

coupling of:

- Finite Viscoelasticity
 Heat-Transfer
- thermal expansion coefficient

Multiphysics Dissipation 1 (dissip1) Thermal Expansion 1 (thermexp1)

Refe	rence temperaturi	
$\theta_{\rm ref}$	293	ĸ
Coef	ficient of thermal expansion:	
a	0.212	2,%

		Implementation in COMSOL Multiphysics	
Multiphysics couplin	ıg		

Couplings

COMSOL

2016 MUNICH

coupling of:

- Finite Viscoelasticity
 Heat-Transfer
- thermal expansion coefficient

Refer	ence temperaturi	
θ_{ref}	293	к
Coeff	icient of thermal expansion	
a	0.212	2,0

otas transition temperature:	
θ ₀ 240	8
 1. Maxwellelement Dissipation 	
1. Maxwellelement 1st WLF-Parameter:	
ct 17.5	1
1. Maxwellelement 2nd WLF-Parameter:	
C ¹ ₂ 52	8
 Coupled Interfaces 	
Mechanical behaviour:	
Finite Viscoelasticity (FiniteViskoEl3d)	•
Thermal behaviour:	
Heat Transfer in Elastomers (heat)	

Multiphysics coupling: Dissipation

- self-heating
- WLF-Parameters for each Maxwell-Element
- could be combined with thermal expansion

	Implementation in COMSOL Multiphysics	Results and Conclusions	
Contents			

Implementation in COMSOL Multiphysics

nplementation in COMSOL Multiphysics

Results and Conclusions

Literatur

Results

Temperature influence of viscoelasticity

Static shear test

- shear angle 20°
- temperature 293 K and 363 K
- chosen academic material parameters

COMSOL

2016 MUNICH

Results and Conclusions 000

Results

Temperature influence of viscoelasticity

- 0 shear angle 20°
- ٠ temperature $293\:\mathrm{K}$ and $363\:\mathrm{K}$
- ٢ chosen academic material parameters

der Bundeswehr Universität 🔥 München

		000	
	Implementation in COMSOL Multiphysics	Results and Conclusions	

Cyclic deformation of an hourglass sample

Cyclic test of an hourglass sample

tension 6 mm

CONFERENCE

2016 MUNICH

- sinus cycle with 4 Hz frequency (tension only)
- temperature 333 K
- chosen academic material parameters
- material parameters could be identified by DMA experiment

Universität 👷 München

340

		Implementation in COMSOL Multiphysics	Results and Conclusions ○○●						
Conclusions									
Conclusions									

• a model for finite viscoelastic material behaviour is proposed and implemented

 temperature dependence of mechanical behaviour is guaranteed by WLF-approach for the relaxation times

der Bundeswehr

Universität 🚯 München

coupling of dissipated mechanical energy and temperature field

coupling temperature and volumetric expansion

modular setup leads to flexibility in application

		Implementation in COMSOL Multiphysics	Literatur
Conclusions			
Literati	ire		

Dippel, B. (2015). Experimentelle Charakterisierung, Modellierung und FE-Berechnung thermomechanischer Kopplung. Ph. D. thesis, Universität der Bundeswehr München.

Dippel, B. and M. Johlitz (2014). Thermo-mechanical couplings in elastomers - experiments and modelling. ZAM Zeitschrift für Angewandte Mathematik und Mechanik.

Haupt, P. (2002). Continuum Mechanics and Theory of Materials. Springer Verlag.

Johlitz, M., B. Dippel, and A. Lion (2015). Dissipative heating of elastomers: a new modelling approach based on finite and coupled thermomechanics. *Continuum Mechanics and Thermodynamics*, 1–15.

Lee, E. (1969). Elastic-plastic deformatin at finite strain. *Jounal of Applied Mechanics 36*, 1–6.

