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Abstract: Cogging torque in permanent magnet 

motors and generators is characterized by a 

torque ripple that usually pulsates at a 

characteristically high angular frequency.  This 

paper presents finite element (FE) analyses 

results that show a previously unaddressed low 

frequency modulation of cogging torque ripple.  

As cogging torque is minimized through 

successful application of optimization schemes, 

the relative proportion of the low-frequency 

component increases and becomes substantial.  

The current approach for analytically describing 

cogging torque does not allow for the 

modulation component.  This paper extends this 

current approach so as to allow such a 

description.  Modulation frequency and 

amplitude estimates are shown consistent with 

FE results. 
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motors, torque ripple. 

 

1. Introduction 
 

 Due largely to their high torque-to-current 

and torque-to-volume ratios, permanent magnet 

(PM) motors and generators are increasingly 

being used in a wide range of high performance 

applications such as industrial drives, robotics, 

computer peripherals, and automotive 

applications.  However, most PM machines 

utilize a slotted iron structure with protruding 

teeth comprising the stator core that interacts 

with the PM poles on the rotor.  This interaction 

generates a tendency for the rotor to align at 

preferential low energy detent positions relative 

to the stator slots.  This is called cogging torque, 

and as the motor rotates, these torque 

fluctuations cause vibrations, noise and speed 

fluctuations.  It can be a vital design 

consideration for machine startup and wherever 

accurate or constant speed motion control is 

required. 

 

 PM’s with higher residual magnetic fields are 

increasingly being used to obtain motors with 

greater magnetic field intensities and therefore 

greater power densities.  However, cogging 

torque is proportional to the square of the 

magnetic field intensity, and is therefore 

increasingly problematic.  As a result, much time 

has been spent analyzing this problem, and 

developing techniques to minimize it.  A number 

of techniques, supported by analytical and 

sometimes FE analysis and experimental results 

have been proposed and demonstrated [1] – [9].  

These include optimizing the teeth width [1, 2, 3, 

6], the pole width [2, 3, 4, 6, 7, 8], and the pole-

to-teeth number ratio [2, 5, 6], and pairing teeth 

and poles of different widths [1, 2 and 4].  Also 

discussed are shaping the magnets [2, 7], 

notching the teeth [2, 4, 9], skewing the teeth or 

the poles [2, 4, 5, 7, 9], shifting the poles [4] and 

asymmetric motors [2].  Essentially all of these 

effects can be incorporated within a Fourier 

transformed air-gap field energy formulation 

described within several of the references and 

briefly reviewed below [1, 2, 3, 8].  However, as 

subsequently described, a low frequency 

modulation of the cogging torque ripple has been 

observed that is outside the scope of this 

prevailing formulation.  This modulation, though 

relatively small compared with typical torque 

ripples, can constitute a significant portion of the 

minimized cogging torque amplitudes within 

motors optimized for reduced cogging torque. 

 

 The purpose of this paper is to characterize 

the low frequency modulation of the normal 

cogging torque ripple, and obtain an analytical 

formulation that explains it.  As such a prior 

formulation of the normal high frequency ripple 

is introduced, then the observed modulation is 

presented.  The extended formulation is then 

derived, and its results compared with those of 

FE analysis.    
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2.  Standard Analysis of Cogging Torque 
 

 Cogging torque is generated by variations in 

the motor’s magnetic field energy as the rotor 

turns.  Since these energy variations are largely 

confined to the airgap and PM fields (i.e. the 

energy within the iron cores are typically 

considered negligible), the standard approach [1, 

2, 3, 8] is to examine the energy in these fields 

Wg due to the corresponding flux density 

distribution Bg: 
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More explicitly (for a radial flux machine with 

PM permeability the same as air for example): 
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where: 

α = rotational angle of the rotor, 

θ = angular position around the machine 

LA = airgap length in axial direction, 

For the external rotor machine, R2 = RM and R1 = 

RS, 

For the internal rotor machine, R2 = RS and R1 = 

RM, 

RM = PM radius, and RS = stator radius, 

G(θ) = relative airgap permeance function (for 

instance, a simple functional form is to assume 

G
2
(θ) is one constant value in the stator shoe 

areas and a smaller constant value in the stator 

slot areas, and both constant values are less than 

or equal to one [1, 2]), 

Br
’2

(θ – α) = modified PM remanence flux 

density (modified to include fringing field [3]) 

 

Cogging torque is given by : 
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The typical form of G
2
(θ) (which we shall here 

define as G0
2
) can be expanded using Fourier 

series [1,2, 8] as: 
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Br
’2

(θ – α) can be likewise be expanded 
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NS and NP are the number of slots and the 

number of PM’s respectively.  For symmetric 

machines the sin terms in (4) and (5) are zero.  

Utilizing (4) within (2) yields Wg0(α), i.e.: 
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 Cogging torque can be determined by 

substituting the expansions (4) and (5) within (6) 

(trig angle subtraction identities are used to 

expand the trig functions in (5), and 

orthogonality relations are used in (6)), and then 

into (3) to obtain the cogging torque T0 

corresponding to the field energy Wg0. 
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NL is the least common multiple of NS and NP 

(i.e. LCM{NS, NP}).  It is now left to determine 

G and B for suitable permeance and B-field 

models [1, 2, 3, 8].  Expressions for the Fourier 

amplitudes provide an understanding of the 

means to minimize torque ripple, and leads to the 

above mentioned techniques.  A more 

quantitative understanding is provided when 

used in conjunction with FE analysis. 

 

 The fundamental torque ripple frequency NL 

matches those obtained from experiments and FE 

analysis.  For example, using the AC/DC module 

of COMSOL Multiphysics, a single-quadrant 

model of a 36 pole 28 slot machine (i.e. NP=36, 

NS=28, and therefore NL= 252) shown in Fig. 1 

produces the torque ripple shown in Fig. 2 via 

the electromagnetic stress tensor.  The ~25.2 

cycles occur over an angular displacement of 



about 0.63 radians, yielding the requisite 252 

cycles in 2π radians.       

 

 

Fig. 1. Baseline version of PM machine quadrant 

(i.e. primary cell) 

 

Fig. 2.  Torque ripple over a period of.63 radians 

 

3. Occurrence of Low Frequency 

Modulation 
 A closer inspection of Fig. 2 shows a low 

frequency modulation of the torque ripple.  Some 

fluctuation of the ripple amplitude can be 

expected (as observed elsewhere [4]); however, 

this much is due to the machines ~300:1 ratio of 

machine torque to ripple amplitude.  From the 

torque plot, the modulation does not seem to 

occur at a distinct frequency, but as shown from 

the energy plot in Fig. 3 (i.e. Wg(α)), it is clear 

the modulation is of a single frequency.  It seems 

the the modulation regularity is degraded when 

the rates of change of both components are 

combined in going from (2) to (3).  Somewhat 

even more notable is that, for a version of the 

Fig. 1 machine with slightly convex shoes, Fig. 4 

shows an energy plot with a more pronounced 

low frequency modulation.  In this case, the 

modulation amplitude is greater than that of the 

normal high frequency ripple.  However, there 

seems to be no published explanation for the 

modulation, and no analytical description of it.  

The approach used to obtain (7) and (8) contains 

no provision for any contribution to the cogging 

torque having an angular frequency less than NL.  

For machines with minor cogging torque 

reduction this contribution may be negligible; 

however, for very low cogging machines, the 

low frequency component can add a substantial 

relative portion to overall cogging amplitude.   

 

Fig. 3. Wg(α) for Fig. 1 model 

 

Fig. 4. Wg(α) for model similar to Fig. 1 but with 

slightly convex shoes 
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4. Extension of the Analytical 

Formulation 
 

 An extension of the above formulation is 

possible by starting with a more general form for 

G
2
(θ) from a standard evaluation of the magnetic 

circuit along the flux path through the stator and 

rotor and across the airgap [10].  Such an 

expression for the gap flux Bg can be written as: 
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where, 

  Pm = PM permeance 

  Pml = magnet leakage permeance 

  Pg = airgap permeance 

 

 Pml is associated with flux that leaks between 

adjacent magnets without going through the 

stator, and is modulated by the presence of the 

stator slots across the airgap.  Only a fraction of 

the leakage flux ∆Pml will vary with position 

relative to the slots, and together with a steady 

baseline value Pml0 comprise Pml (i.e. Pml=Pml0+ 

∆Pml).  (9) can be rewritten as: 
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 Via Pg, the expression associated with the 

first set of parenthesis has a periodicity that is 

determined by that of the stator slots only.  As 

such it corresponds to G0(θ) used in the 

equations above and essentially to the permeance 

function used in the references [1, 2]; i.e: 

 

 

1

0
0

4
1

−













 +
+=

g

mlm

P

PP
G     (11) 

 

For θ within a shoe area, Pg, the denominator in 

(11), is much larger than the numerator (which is 

a constant value), and therefore G0(θ) is close to 

unity.  And for θ within a slot area, Pg is much 

smaller than the numerator, and therefore G0(θ) 

is close to zero.  With (11), (10) can be rewritten 

as: 
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and, 
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 The magnet leakage flux that can be seen 

between adjacent magnets in Fig. 1 varies over 

the nine magnets within the modeled quadrant.  

The quadrant constitutes the primary cell for this 

machine, so the leakage flux pattern must repeat 

with a within the next quadrant.  Also, since it is 

the presence of the stator that generates the 

leakage flux variation, the leakage flux is a 

periodic function of θ with a fundamental period 

that is one quadrant long. (13) can be rewritten 

as: 
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 Since the period of ∆Pml (which must be the 

same as that of the leakage flux) must be an 

integral multiple of the period of G0
3
, the 

periodicity of G1
2
 is determined by that of ∆Pml 

(i.e. the longest period).  Substituting (14) into 

(1) yields: 
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Similar to (4), we expand G1
2
. 
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where, 

 NC = GCF{NP, NS} = number of primary 

cells (in this case 4) 



GCF = Greatest Common Factor  

 

Similar to (7), substitution into (16) yields: 
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 By definition, NP = LCM{NC, NP}.  This 

periodicity can be verified with inspection of 

Fig. (3) and Fig. (4) in which NC = 4, NP = 36.  

By definition, NP ≤ NL, and therefore Wg0(α) 

must yield the high frequency ripples while 

Wg1(α) gives the low frequency modulation.  As 

stated above, the fundamental frequency of the 

high frequency ripple is NL = 252, while 

according to (18), that of the modulation is NP = 

36.  The ripple frequency should therefore be 

seven times more than that of the modulation.  

This is borne out by the figures.  

 

 For comparison with Fig. 2, substitution of 

(16) with (18) into (3) gives the total torque: 

 

  T(α) = T0(α) + T1(α) 

where,
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It is now left to check the relative amplitudes of 

the ripple and modulation components, which 

will be done only roughly.  Subject to 

subsequent verification, the amplitude of Wg1(α) 

relative to Wg0(α) is assumed correlated with that 

of G1 relative to G0 (i.e. an appeal to (16)), which 

is in turn given by (15).  Using the 

approximation that G0 assumes values of either 

one or zero [1, 2],  

 

 Wg1/Wg0 ≈ G1/G0 ≈ 8∆Pml/Pg     (20) 

 

Furthermore, by approximating a substantial 

linearity in the amplitude of ∆Pml with respect to 

Pml, (20) can be used to write, 

 

    

g

ml

g

g

P

P

W

W
∝

0

1
     (21) 

 

 A simple form of this ratio obtained from a 

semicircular arc approximation of the fringing 

field [10] is: 
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τm is the magnet length, τp is the pole pitch (i.e. 

distance between adjacent magnet centers), and g 

is the airgap thickness.  

 

 Table 1 summarizes values obtained for 

several versions of the Fig. 1 generator model 

having different g and τm values, and compares 

the RHS ratio in (21) calculated via (22) with the 

LHS ratio in (21) obtained directly from FE 

analysis.  This comparison is also provided 

graphically in Fig. 5.  The last model was not 

included in the graph because it introduces an 

additional degree of freedom (i.e. shoe shape) 

that is not accounted for in (22), and which does 

not fit the simple linear relationship implied by 

(21). 

 

Table 1 

 

 

Fig. 5.  Correlation of approximated amplitude 

ratios: Analytical vs. FE analysis  

 

 While not strictly proportional, Fig. 5 shows 

a strong correlation between the LHS and RHS 
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of (21), which strongly suggests that, in addition 

to the modulation frequency, the cogging torque 

and B-field energy modulation amplitudes 

derived from the extended analytical formulation 

are also correct.  It provides a tool that can be 

used in conjunction with FE analysis to decrease 

both the low and high frequency cogging torque 

components.  Fig. 5 shows that decreasing the 

leakage flux decreases the low frequency 

modulation, while the work summarized in 

Section 2 shows how to decrease the high 

frequency component.  One deficiency of the 

model is the lack of an expression for ∆Pml.  The 

assumed correlation with Pml in conjunction with 

(22) helps, but has limited applicability.  

 

5. Use of COMSOL Multiphysics  

 

 The problem modeled in COMSOL is similar 

to a combination of two examples from the 

AC/DC Model Library: the Generator in 2D, and 

the Generator with Mechanical Dynamics and 

Symmetry; therefore, the governing E-M 

equation is the same quasi-static approximation 

used in those models.  Only 1/4
th

 of the generator 

is modeled; therefore, the boundary conditions 

are the same as that of the latter model.  

However, a prescribed rotation exactly as 

described in the former model was used; 

therefore, unlike the latter model, no ODE for 

the mechanical dynamics was required.  One 

interesting difference is that, there were many 

more structural features and dimensional 

variations than in the library models.  This 

seemed to cause problems with the transient 

solver; therefore, because there was no need to 

model induced currents, the parametric solver 

was used instead with time as the parameter. 

 

6.  Conclusion 
 

 Low frequency cogging modulation in PM 

machines seems to have previously gone 

unaddressed.  The current work accomplished 

the following: 

 

1. Used FE analysis to identify and 

characterize low-frequency modulation 

of PM machine cogging torque, 

2. Obtained an analytical formulation that 

describes and explains the modulation, 

3. Demonstrated good agreement between 

the analytical formulation and the FE 

analysis for modulation frequency and 

amplitude, 

4. Identified analytical relationships that 

provide a means of minimizing the low 

frequency cogging torque component.  
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