Identification and Analysis of Low-Frequency Cogging Torque Component in Permanent Magnet Machines

> Devon R. McIntosh Sonsight Inc. / NSWC 17609 Clinton Dr., Accokeek, MD 20607

devonrocky@gmail.com

## Introduction

- Cogging torque ripple in PM machines characterized by a relatively high frequency (i.e. LCM of pole and slot numbers).
- FE calculations show a previously unaddressed low frequency modulation of cogging torque ripple that cannot be explained within the current formulation.
- The formulation was extended to allow an understanding and description of the modulation.
- Modulation frequency and amplitude estimates are shown consistent with FE results.

## Introduction

## Background

- Cogging torque occurrence & reduction means
- Standard formulation
- Observed low frequency modulation
- Extended formulation
- Comparison with FE results.
- Conclusion

# Background – Cogging Torque Occurrence

- Many configurations of PM machines
- Most use slotted stator ironcore structure with protruding teeth/shoes
- PM's on rotor interact magnetically with stator teeth/shoes, which causes rotor to align at preferential low energy positions relative to the teeth/shoes – cogging torque
- Generates torque fluctuations, which cause vibrations, noise, speed variations, startup and low speed operation difficulties.



Inner rotor radial flux PM machines with surface magnets & shoes

Background – Two Main Principles Underlying Cogging Torque Reduction

- Minimize abruptness of pole-teeth attraction
  - Magnet shaping
  - Teeth skewing
  - Pole skewing
- Use individual pole-teeth attractions to offset or at least minimally add to each other
  - Utilize shoes
  - Optimize pole-to-teeth number ratio
  - Pair shoes and poles of different widths
  - Teeth/shoe notching

#### Background – Standard Formulation

#### 1. General Expressions



- L<sub>A</sub> is generator length (i.e. airgap length)
- G is dimensionless relative airgap permeance function – periodic with slot periodicity
- B<sub>r</sub>' is PM remanence flux density periodic with pole periodicity (prime notation is to allow B<sub>r</sub> extension to include fringing fields)

 $G_{0}^{2}(\theta) = \sum_{n=0}^{\infty} \left[ G_{anNs} \cos nN_{s}\theta + G_{bnNs} \sin nN_{s}\theta \right]$   $G_{0} \text{ is standard (un-extended) form of } G$ Ns is the number of slots

$$B_r'^2(\theta - \alpha) = \sum_{n=0}^{\infty} \begin{bmatrix} B_{anNp} \cos nN_p(\theta - \alpha) \\ + B_{bnNp} \sin nN_p(\theta - \alpha) \end{bmatrix}$$

NP is the number of poles

$$W_{g0}(\alpha) = \frac{\pi L_A}{4\mu_0} (R_2^2 - R_1^2) \sum_{n=0}^{\infty} G_{anNL} B_{anNL} \cos nN_L \alpha$$

 $W_{g0} = W_g$  when  $G = G_0$  $N_L = LCM\{N_S, N_P\}$ 

## Background – Standard Formulation



~25.2 cycles of torque ripple over a period of 0.63 radians yields 252 cycles in  $2\pi$  radians (Model shown on prior slide – built using approach that is combo of "Generator in 2-D" & "Generator with Mechanical Dynamics and Symmetry" in AC/DC model library. It is a sector model with anti-symmetric side boundaries like the latter, but it has a constant prescribed rotation like the former.)

- The fundamental torque ripple frequency N<sub>L</sub> matches those obtained from measurements and FE analysis.
  - COMSOL AC/DC single quadrant model of 36 pole 28 slot machine (i.e. NP=36, Ns=28, and therefore NL= 252) produces shown torque ripple.
  - The ~25.2 cycles occur over an angular displacement of about 0.63 radians, yielding the requisite 252 cycles in 2π radians.
- High frequency torque ripple is modulated by low frequency component but no provision for description in standard formulation
- In this plot, modulation component seems aperiodic

#### Low Frequency Modulation Clearly Periodic in B-Field Energy Plots



- Corresponding W<sub>g</sub>(α) shows periodic cogging torque modulation
- Modulation component essentially single frequency
- This case modulation amplitude roughly equal to that of high frequency ripple
- W<sub>g</sub>(α) for a version of the Fig. 1 machine with slightly convex shoes
- This case modulation amplitude greater than that of the high frequency ripple

## Extended Formulation

From magnetic circuit analysis:

$$B_g = \frac{B_r}{1 + \frac{P_m}{P_g} + 4\frac{P_{ml}}{P_g}}$$

 $\begin{array}{l} P_m = \mathsf{PM} \text{ permeance} \\ P_{ml} = \text{magnet leakage permeance between PM's} \\ = \mathsf{P}_{ml0} + \Delta \mathsf{P}_{ml} \\ \Delta \mathsf{P}_{ml} = \Delta \mathsf{P}_{ml}(\theta) \text{ because variation caused by stator} \\ P_g = \text{airgap permeance} \end{array}$ 

Via power series expansion, the square of the above equation for Bg can be approximated as:

$$B_{g}^{2}(\theta, \alpha) = B_{r}^{2}(\theta - \alpha)G_{0}^{2}(\theta) - B_{r}^{2}(\theta - \alpha)G_{1}^{2}(\theta)$$
$$G_{0} = \left(1 + \frac{P_{m} + 4P_{ml0}}{P_{g}}\right)^{-1} \qquad G_{1}^{2}(\theta) = \frac{8\Delta P_{ml}(\theta)}{P_{g}}G_{0}^{3}$$



## Extended Formulation

$$W_g = \frac{1}{2\mu_0} \int B_g^2 dV$$

$$W_{g}(\alpha) = W_{g0}(\alpha) - \left[\frac{\frac{1}{4\mu_{0}}L_{A}(R_{2}^{2} - R_{1}^{2})}{\int_{0}^{2\pi}G_{1}^{2}(\theta)B_{r}^{'2}(\theta - \alpha)d\theta}\right]$$

or,

 $W_{g}(\alpha) = W_{g0}(\alpha) - W_{g1}(\alpha)$ 

$$T(\alpha) = -\frac{\partial W_g(\alpha)}{\partial \alpha}$$

$$T(\alpha) = T_0(\alpha) + T_1(\alpha)$$

Similar to the standard formulation, we Fourier - expand  $G_1^2$ :

$$G_1^2(\theta) = \sum_{n=0}^{\infty} \left[ G'_{anNc} \cos nN_c \theta + G'_{bnNc} \sin nN_c \theta \right]$$

where,  $N_C = \text{GCF}\{N_P, N_S\} = \text{number of}$ primary cells (in this case 4) – i.e. generator arc with smallest number of matched slots and poles.

Substitution into  $W_g(\alpha)$  Eqn. yields:

$$W_{g1}(\alpha) = \frac{\pi L_A}{4\mu_0} (R_2^2 - R_1^2) \sum_{n=0}^{\infty} G'_{anNP} B_{anNP} \cos nN_P \alpha$$
  
By definition,  $NP = \text{LCM}\{Nc, NP\}$ 

## Comparison With FE Results Fundamental Modulation Frequency = $N_p = 36 = 252/7$



Correct frequency calculation validates extended formulation

### Comparison With FE Results Modulation Amplitude vs. Ripple Amplitude

For linearity of  $\triangle P_{ml}$  w.r.t.  $P_{ml}$ , and  $W_g$  w.r.t. G, the extended formulation predicts that:

$$\frac{W_{g1}}{W_{g0}} \propto \frac{P_{ml}}{P_g}$$

Which can be expressed as:

$$\frac{P_{ml}}{P_g} = \frac{g}{\pi \tau_m} \ln \left[ 1 + \pi \frac{g}{\tau_p - \tau_m} \right]$$

 $\tau_m$  is the magnet length,  $\tau_p$  is the pole pitch (i.e. distance between adjacent magnet centers), and g is the airgap thickness.

|                 |        | τ₀    | τ <sub>m</sub> |                                  |                 |
|-----------------|--------|-------|----------------|----------------------------------|-----------------|
| Model           | g (mm) | (mm)  | (mm)           | $\mathbf{P}_{ml}/\mathbf{P}_{g}$ | $W_{g1}/W_{g0}$ |
| Baseline        | 3.18   | 39.90 | 25.40          | 0.02                             | 0.47            |
| Long Mag        | 3.18   | 39.90 | 35.91          | 0.04                             | 0.44            |
| Long/Thin Mag   | 6.99   | 39.90 | 35.91          | 0.12                             | 1.75            |
| Thin Mag        | 9.53   | 39.90 | 25.40          | 0.13                             | 2.50            |
| Slightly Convex |        |       |                |                                  |                 |
| Shoe            | 3.18   | 39.90 | 25.40          | 0.02                             | 2.80            |



## Conclusion

### The work accomplished the following:

- Used FE analysis to identify and characterize lowfrequency modulation of PM machine cogging torque,
- Obtained an analytical formulation that describes and explains the modulation,
- Demonstrated good agreement between the analytical formulation and the FE analysis for modulation frequency and amplitude,
- Identified analytical relationships that provide a means of minimizing the low frequency cogging torque component.